The Performance of Estimators for Generalization of Crack Distribution

Supitcha Mamuangbon, K. Budsaba, Andrei Volodin
{"title":"The Performance of Estimators for Generalization of Crack Distribution","authors":"Supitcha Mamuangbon, K. Budsaba, Andrei Volodin","doi":"10.37394/23206.2021.20.11","DOIUrl":null,"url":null,"abstract":"In this research, we propose a new four parameter family of distributions called Generalized Crack distribution. We generalizes the family three parameter Crack distribution. The Generalized Crack distribution is a mixture of two parameter Inverse Gaussian distribution, Length-Biased Inverse Gaussian distribution, Twice Length-Biased Inverse Gaussian distribution, and adding one more weight parameter . It is a special case for , where and is the weighted parameter. We investigate the properties of Generalized Crack distribution including first four moments, parameters estimation by using the maximum likelihood estimators and method of moment estimation. Evaluate the performance of the estimators by using bias. The results of simulation are presented in numerically and graphically.","PeriodicalId":112268,"journal":{"name":"WSEAS Transactions on Mathematics archive","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Mathematics archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23206.2021.20.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, we propose a new four parameter family of distributions called Generalized Crack distribution. We generalizes the family three parameter Crack distribution. The Generalized Crack distribution is a mixture of two parameter Inverse Gaussian distribution, Length-Biased Inverse Gaussian distribution, Twice Length-Biased Inverse Gaussian distribution, and adding one more weight parameter . It is a special case for , where and is the weighted parameter. We investigate the properties of Generalized Crack distribution including first four moments, parameters estimation by using the maximum likelihood estimators and method of moment estimation. Evaluate the performance of the estimators by using bias. The results of simulation are presented in numerically and graphically.
裂纹分布概化估计量的性能
在这项研究中,我们提出了一个新的四参数分布族,称为广义裂纹分布。我们推广了三参数裂纹分布族。广义裂纹分布是双参数高斯反分布、长度偏置高斯反分布、两倍长度偏置高斯反分布和再加一个权参数的混合分布。这是一个特殊情况,其中和是加权参数。研究了广义裂纹分布的性质,包括前四阶矩、极大似然估计参数估计和矩估计方法。使用偏差来评估估计器的性能。仿真结果以数值和图形形式给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信