Formal derivation of quantum drift-diffusion equations with spin-orbit interaction

L. Barletti, Philipp Holzinger, A. Jungel
{"title":"Formal derivation of quantum drift-diffusion equations with spin-orbit interaction","authors":"L. Barletti, Philipp Holzinger, A. Jungel","doi":"10.3934/krm.2022007","DOIUrl":null,"url":null,"abstract":"Quantum drift-diffusion equations for a two-dimensional electron gas with spin-orbit interactions of Rashba type are formally derived from a collisional Wigner equation. The collisions are modeled by a Bhatnagar–Gross–Krook-type operator describing the relaxation of the electron gas to a local equilibrium that is given by the quantum maximum entropy principle. Because of non-commutativity properties of the operators, the standard diffusion scaling cannot be used in this context, and a hydrodynamic time scaling is required. A Chapman–Enskog procedure leads, up to first order in the relaxation time, to a system of nonlocal quantum drift-diffusion equations for the charge density and spin vector densities. Local equations including the Bohm potential are obtained in the semiclassical expansion up to second order in the scaled Planck constant. The main novelty of this work is that all spin components are considered, while previous models only consider special spin directions.","PeriodicalId":393586,"journal":{"name":"Kinetic & Related Models","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic & Related Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/krm.2022007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum drift-diffusion equations for a two-dimensional electron gas with spin-orbit interactions of Rashba type are formally derived from a collisional Wigner equation. The collisions are modeled by a Bhatnagar–Gross–Krook-type operator describing the relaxation of the electron gas to a local equilibrium that is given by the quantum maximum entropy principle. Because of non-commutativity properties of the operators, the standard diffusion scaling cannot be used in this context, and a hydrodynamic time scaling is required. A Chapman–Enskog procedure leads, up to first order in the relaxation time, to a system of nonlocal quantum drift-diffusion equations for the charge density and spin vector densities. Local equations including the Bohm potential are obtained in the semiclassical expansion up to second order in the scaled Planck constant. The main novelty of this work is that all spin components are considered, while previous models only consider special spin directions.
具有自旋-轨道相互作用的量子漂移-扩散方程的形式推导
从碰撞Wigner方程导出了具有Rashba型自旋-轨道相互作用的二维电子气体的量子漂移-扩散方程。碰撞由bhatnagar - gross - krook型算子模拟,该算子描述了电子气体松弛到由量子最大熵原理给出的局部平衡。由于算子的非交换性,标准的扩散标度不能在这种情况下使用,而需要水动力时间标度。Chapman-Enskog程序在松弛时间达到一阶的情况下,可以得到电荷密度和自旋矢量密度的非局部量子漂移-扩散方程系统。在尺度普朗克常数的二阶半经典展开中,得到了包含玻姆势的局部方程。这项工作的主要新颖之处在于考虑了所有的自旋分量,而以前的模型只考虑了特殊的自旋方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信