Keita Ohata, Hiroki Watanabe, Jun-ichi Itoh, K. Kusaka
{"title":"Decentralized Control Using Wireless Signal Communication for Multi-Port EV Charger with Multiple Cells","authors":"Keita Ohata, Hiroki Watanabe, Jun-ichi Itoh, K. Kusaka","doi":"10.23919/IPEC-Himeji2022-ECCE53331.2022.9807240","DOIUrl":null,"url":null,"abstract":"This paper proposes a decentralized control scheme of a multi-cell AC/DC converter for electric vehicle (EV) charger applications. The multi-cell topology effectively achieves high scalability by connecting cells in series and parallel. Generally, the multi-cell topology requires a lot of signal lines between the master control and slave controllers in order to control the power-sharing between the cell converters. Thus, the maintainability of the power converters is restricted with these wires. The proposed control scheme with a wireless communication for the EV charger requires no signal wires between master and slave controllers. The features of the proposed decentralized scheme are; 1)it allows communication delay of several hundred milliseconds, 2)each unit, which consists of three single-phase AC/DC converters, has an independent the slave controller. The proposed method is verified by with six units. The power-sharing is demonstrated by the the 7.2-kW prototype. The imbalance rate of the input current is suppressed by 7% or less.","PeriodicalId":256507,"journal":{"name":"2022 International Power Electronics Conference (IPEC-Himeji 2022- ECCE Asia)","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Power Electronics Conference (IPEC-Himeji 2022- ECCE Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IPEC-Himeji2022-ECCE53331.2022.9807240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a decentralized control scheme of a multi-cell AC/DC converter for electric vehicle (EV) charger applications. The multi-cell topology effectively achieves high scalability by connecting cells in series and parallel. Generally, the multi-cell topology requires a lot of signal lines between the master control and slave controllers in order to control the power-sharing between the cell converters. Thus, the maintainability of the power converters is restricted with these wires. The proposed control scheme with a wireless communication for the EV charger requires no signal wires between master and slave controllers. The features of the proposed decentralized scheme are; 1)it allows communication delay of several hundred milliseconds, 2)each unit, which consists of three single-phase AC/DC converters, has an independent the slave controller. The proposed method is verified by with six units. The power-sharing is demonstrated by the the 7.2-kW prototype. The imbalance rate of the input current is suppressed by 7% or less.