Acceleration of Symmetric Sparse Matrix-Vector Product using Improved Hierarchical Diagonal Blocking Format

Ryo Muro, A. Fujii, Teruo Tanaka
{"title":"Acceleration of Symmetric Sparse Matrix-Vector Product using Improved Hierarchical Diagonal Blocking Format","authors":"Ryo Muro, A. Fujii, Teruo Tanaka","doi":"10.1145/3293320.3293332","DOIUrl":null,"url":null,"abstract":"In the previous study, Guy et al. proposed sparse matrix-vector product (SpMV) acceleration using the Hierarchical Diagonal Blocking (HDB) format that recursively repeated partitioning, reordering, and blocking on symmetric sparse matrix. The HDB format stores sparse matrix hierarchically using tree structure. Each node of tree structure of HDB format store small sparse matrices using CSR format. In this present study, we examined two problems with the HDB format and provided a solution for each problem. First, SpMV using the HDB format has a partial dependent relationship among hierarchies. The problem with the HDB format is that the parallelism of computation decreases as the hierarchy of nodes gets closer to the root. Thus, we propose cutting of dependency using work vectors to solve this problem. Second, each node of the conventional HDB format is stored in Compressed Sparse Row (CSR) format. Block compressed Sparse Row (BSR) format often becomes faster than CSR format in SpMV performance. Thus, we evaluated the effectiveness of our proposed method with work vectors also for BSR-HDB format. In addition, we compare the performance in the general format (CSR format, BSR format) using the Intel Math Kernel Library (MKL), the conventional HDB format, and the expanded HDB format by using 22 types of sparse matrix that from various field. The results showed that the SpMV performance was highest in the HDB format that we expanded in 19 types of sparse matrix, which was 1.99 times faster than the CSR format.","PeriodicalId":314778,"journal":{"name":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3293320.3293332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the previous study, Guy et al. proposed sparse matrix-vector product (SpMV) acceleration using the Hierarchical Diagonal Blocking (HDB) format that recursively repeated partitioning, reordering, and blocking on symmetric sparse matrix. The HDB format stores sparse matrix hierarchically using tree structure. Each node of tree structure of HDB format store small sparse matrices using CSR format. In this present study, we examined two problems with the HDB format and provided a solution for each problem. First, SpMV using the HDB format has a partial dependent relationship among hierarchies. The problem with the HDB format is that the parallelism of computation decreases as the hierarchy of nodes gets closer to the root. Thus, we propose cutting of dependency using work vectors to solve this problem. Second, each node of the conventional HDB format is stored in Compressed Sparse Row (CSR) format. Block compressed Sparse Row (BSR) format often becomes faster than CSR format in SpMV performance. Thus, we evaluated the effectiveness of our proposed method with work vectors also for BSR-HDB format. In addition, we compare the performance in the general format (CSR format, BSR format) using the Intel Math Kernel Library (MKL), the conventional HDB format, and the expanded HDB format by using 22 types of sparse matrix that from various field. The results showed that the SpMV performance was highest in the HDB format that we expanded in 19 types of sparse matrix, which was 1.99 times faster than the CSR format.
基于改进分层对角块格式的对称稀疏矩阵向量积加速
在之前的研究中,Guy等人使用分层对角阻塞(HDB)格式提出了稀疏矩阵向量积(SpMV)加速,该格式在对称稀疏矩阵上递归重复分区、重新排序和阻塞。HDB格式使用树形结构分层存储稀疏矩阵。HDB格式树状结构的每个节点使用CSR格式存储小的稀疏矩阵。在本研究中,我们研究了组屋格式的两个问题,并为每个问题提供了解决方案。首先,使用HDB格式的SpMV在层次结构之间具有部分依赖关系。HDB格式的问题在于,随着节点层次结构越来越接近根,计算的并行性就会降低。因此,我们建议使用功向量来减少依赖关系来解决这个问题。其次,传统HDB格式的每个节点都以压缩稀疏行(Compressed Sparse Row, CSR)格式存储。块压缩稀疏行(BSR)格式在SpMV性能上往往优于CSR格式。因此,我们用BSR-HDB格式的功向量评估了我们提出的方法的有效性。此外,我们使用来自不同领域的22种稀疏矩阵,比较了通用格式(CSR格式、BSR格式)、常规HDB格式和扩展HDB格式下的性能。结果表明,扩展到19种稀疏矩阵的HDB格式的SpMV性能最高,比CSR格式快1.99倍;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信