A non-intrusive PESQ measure

D. Sharma, Lisa Meredith, Jose Lainez, Daniel Barreda, P. Naylor
{"title":"A non-intrusive PESQ measure","authors":"D. Sharma, Lisa Meredith, Jose Lainez, Daniel Barreda, P. Naylor","doi":"10.1109/GlobalSIP.2014.7032266","DOIUrl":null,"url":null,"abstract":"We present NISQ, a data-driven non-intrusive speech quality measure that has been trained to predict the PESQ score for a given speech signal. NISQ is based on feature extraction and a binary tree regression based model. A training method using the intrusive PESQ algorithm to automatically label large quantities of speech data is presented and utilized. Our method is shown to predict PESQ with an RMS error of 0.49 on our test database.","PeriodicalId":362306,"journal":{"name":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2014.7032266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We present NISQ, a data-driven non-intrusive speech quality measure that has been trained to predict the PESQ score for a given speech signal. NISQ is based on feature extraction and a binary tree regression based model. A training method using the intrusive PESQ algorithm to automatically label large quantities of speech data is presented and utilized. Our method is shown to predict PESQ with an RMS error of 0.49 on our test database.
一种非侵入式PESQ测量方法
我们提出了NISQ,一种数据驱动的非侵入式语音质量度量,经过训练可以预测给定语音信号的PESQ分数。NISQ基于特征提取和二叉树回归模型。提出了一种利用入侵式PESQ算法对大量语音数据进行自动标注的训练方法。我们的方法在我们的测试数据库上预测PESQ的RMS误差为0.49。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信