Pairwise Strongly Lindelöf, Pairwise Nearly, Almost and Weakly Lindelöf Bitopological Spaces

E. Almuhur, M. Al-Labadi
{"title":"Pairwise Strongly Lindelöf, Pairwise Nearly, Almost and Weakly Lindelöf Bitopological Spaces","authors":"E. Almuhur, M. Al-Labadi","doi":"10.37394/23206.2021.20.16","DOIUrl":null,"url":null,"abstract":"The main purposes of this article is to introduce new generalizations of the notion of pairwise Lindelöf spaces in bitopological spaces where new notions: pairwise strongly Lindelöf, pairwise nearly, pairwise almost and pairwise weakly strongly Lindelöf bitopological spaces depend on the new notion pairwise preopen countable covers. These covers where we focused on their importance in topology consist of countable subfamilies whose closures cover the bitopological spaces and we clarified how pairwise preopen countable covers effect on pairwise strongly Lindelöf spaces. The new concepts of pairwise strongly Lindelöf, pairwise nearly, pairwise almost and pairwise weakly strongly Lindelöf bitopological spaces are introduced and many definitions, propositions, characterizations and remarks concerning those notions are initiated, discussed and explored. Furthermore, the relationships between those bitopological spaces are examined and investigated. We illustrated the implications hold by these new bitopological spaces. We put some queries and claims, then we struggle to provide their proofs. Key-Words: Pairwise Strongly Lindelöf, Pairwise Almost Strongly Lindelöf. Received: January 16, 2021. Revised: April 1, 2021. Accepted: April 5, 2021. Published: April 9, 2021.","PeriodicalId":112268,"journal":{"name":"WSEAS Transactions on Mathematics archive","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Mathematics archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23206.2021.20.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The main purposes of this article is to introduce new generalizations of the notion of pairwise Lindelöf spaces in bitopological spaces where new notions: pairwise strongly Lindelöf, pairwise nearly, pairwise almost and pairwise weakly strongly Lindelöf bitopological spaces depend on the new notion pairwise preopen countable covers. These covers where we focused on their importance in topology consist of countable subfamilies whose closures cover the bitopological spaces and we clarified how pairwise preopen countable covers effect on pairwise strongly Lindelöf spaces. The new concepts of pairwise strongly Lindelöf, pairwise nearly, pairwise almost and pairwise weakly strongly Lindelöf bitopological spaces are introduced and many definitions, propositions, characterizations and remarks concerning those notions are initiated, discussed and explored. Furthermore, the relationships between those bitopological spaces are examined and investigated. We illustrated the implications hold by these new bitopological spaces. We put some queries and claims, then we struggle to provide their proofs. Key-Words: Pairwise Strongly Lindelöf, Pairwise Almost Strongly Lindelöf. Received: January 16, 2021. Revised: April 1, 2021. Accepted: April 5, 2021. Published: April 9, 2021.
成对强Lindelöf,成对近,几乎和弱Lindelöf双拓扑空间
本文的主要目的是引入双拓扑空间中成对Lindelöf空间概念的新推广,其中新概念:成对强Lindelöf、成对近、成对几乎和成对弱强Lindelöf双拓扑空间依赖于成对预开可数覆盖的新概念。这些覆盖在拓扑学中的重要性由可数亚族组成,其闭包覆盖双拓扑空间,并阐明了成对预开可数覆盖如何影响成对强Lindelöf空间。引入了成对强Lindelöf、成对近、成对几乎和成对弱强Lindelöf双拓扑空间的新概念,并对这些概念提出了许多定义、命题、表征和注释。此外,还研究了这些双拓扑空间之间的关系。我们说明了这些新的双拓扑空间的含义。我们提出一些疑问和声明,然后努力提供它们的证明。关键词:成对强Lindelöf,成对几乎强Lindelöf。收稿日期:2021年1月16日。修订日期:2021年4月1日。录用日期:2021年4月5日。发布日期:2021年4月9日。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信