Transfer Learning for Land Cover Semantic Segmentation

A. Kındıroglu, Metehan Yalçin, F. Bagci, Ufuk Uyan, Mahiye Uluyagmur Öztürk
{"title":"Transfer Learning for Land Cover Semantic Segmentation","authors":"A. Kındıroglu, Metehan Yalçin, F. Bagci, Ufuk Uyan, Mahiye Uluyagmur Öztürk","doi":"10.1109/UBMK55850.2022.9919601","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a transfer learning based semantic segmentation method for generating land cover maps from low quality satellite images. We use level 16 semantic segmentation maps to learn a baseline segmentation model. We compare combined training with other source datasets from different sources in supervised and semi-supervised transfer learning settings. Experiments show that using transfer learning improves recognition performance from 60.2% to 63.6% miou in rural areas and 79.6 % to 92.5 % miou in urban settings. Observations indicate that transfer learning is more advantageous when two datasets share a comparable zoom level and are annotated with identical rules; otherwise, treating the data as unlabeled and employing semi-supervised learning is more effective.","PeriodicalId":417604,"journal":{"name":"2022 7th International Conference on Computer Science and Engineering (UBMK)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK55850.2022.9919601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we describe a transfer learning based semantic segmentation method for generating land cover maps from low quality satellite images. We use level 16 semantic segmentation maps to learn a baseline segmentation model. We compare combined training with other source datasets from different sources in supervised and semi-supervised transfer learning settings. Experiments show that using transfer learning improves recognition performance from 60.2% to 63.6% miou in rural areas and 79.6 % to 92.5 % miou in urban settings. Observations indicate that transfer learning is more advantageous when two datasets share a comparable zoom level and are annotated with identical rules; otherwise, treating the data as unlabeled and employing semi-supervised learning is more effective.
土地覆盖语义分割的迁移学习
本文描述了一种基于迁移学习的语义分割方法,用于从低质量卫星图像中生成土地覆盖图。我们使用16级语义分割图来学习基线分割模型。我们在监督和半监督迁移学习设置中比较了组合训练与来自不同来源的其他源数据集。实验表明,使用迁移学习在农村地区将识别性能从60.2%提高到63.6%,在城市环境中将识别性能从79.6%提高到92.5%。观察表明,当两个数据集共享可比较的缩放级别并使用相同的规则进行注释时,迁移学习更有利;否则,将数据视为未标记并采用半监督学习更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信