Vehicle Tracking in Wide Area Motion Imagery using KC- LoFT Multi-Feature Discriminative Modeling

Noor M. Al-Shakarji, F. Bunyak, G. Seetharaman, K. Palaniappan
{"title":"Vehicle Tracking in Wide Area Motion Imagery using KC- LoFT Multi-Feature Discriminative Modeling","authors":"Noor M. Al-Shakarji, F. Bunyak, G. Seetharaman, K. Palaniappan","doi":"10.1109/AIPR.2017.8457953","DOIUrl":null,"url":null,"abstract":"Recently our group proposed LoFT (Likelihood of Features Tracking) tracker system [1] that can successfully track objects of interest under different scenarios of wide-area motion imagery and full motion video. LoFT is a recognition-based single target tracker that relies on fusion of multiple complementary features. In this paper, LoFT is extended with a kernelized correlation filter (KCF) module to incorporate a robust continuous target template update scheme to better localize the target and to recover from sudden appearance changes and occlusions. Decision module using peak-to-sidelobe ratio is added to KCF module to prevent error accumulation from blending non-target regions to target template during update, and to prevent fusion of the KCF likelihood map to the other LoFT feature likelihood maps when the KCF response is not reliable. KC-LoFT is a single object tracker that fuses the most discriminative features from LoFT and KCF to better localize the target object in the search window. KC-LoFT was tested on ABQ aerial wide area motion imagery dataset [2] and produced promising results compared to recent state-of-the-art tracking systems in term of accuracy and robustness.","PeriodicalId":128779,"journal":{"name":"2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2017.8457953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Recently our group proposed LoFT (Likelihood of Features Tracking) tracker system [1] that can successfully track objects of interest under different scenarios of wide-area motion imagery and full motion video. LoFT is a recognition-based single target tracker that relies on fusion of multiple complementary features. In this paper, LoFT is extended with a kernelized correlation filter (KCF) module to incorporate a robust continuous target template update scheme to better localize the target and to recover from sudden appearance changes and occlusions. Decision module using peak-to-sidelobe ratio is added to KCF module to prevent error accumulation from blending non-target regions to target template during update, and to prevent fusion of the KCF likelihood map to the other LoFT feature likelihood maps when the KCF response is not reliable. KC-LoFT is a single object tracker that fuses the most discriminative features from LoFT and KCF to better localize the target object in the search window. KC-LoFT was tested on ABQ aerial wide area motion imagery dataset [2] and produced promising results compared to recent state-of-the-art tracking systems in term of accuracy and robustness.
基于KC- LoFT多特征判别建模的广域运动图像车辆跟踪
最近,我们小组提出了LoFT (Likelihood of Features Tracking)跟踪系统[1],可以在广域运动图像和全运动视频的不同场景下成功跟踪感兴趣的物体。LoFT是一种基于识别的单目标跟踪器,它依赖于多个互补特征的融合。本文将LoFT扩展为核化相关滤波器(KCF)模块,结合鲁棒的连续目标模板更新方案,以更好地定位目标,并从突然的外观变化和遮挡中恢复。在KCF模块中加入使用峰旁瓣比的决策模块,以防止更新过程中非目标区域与目标模板混合产生的误差积累,并防止KCF响应不可靠时KCF似然图与其他LoFT特征似然图的融合。KC-LoFT是一种单目标跟踪器,它融合了LoFT和KCF最具区别性的特征,可以更好地定位搜索窗口中的目标物体。KC-LoFT在ABQ航空广域运动图像数据集上进行了测试[2],与最近最先进的跟踪系统相比,在准确性和鲁棒性方面产生了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信