Enhancement of Temperature-humidity Retrieval Algorithms of Satellite MW Data Processing

V. Savorskiy, D. Ermakov, B. Kutuza, A. Chernushich, M. Smirnov, O. Panova, M. Danilychev
{"title":"Enhancement of Temperature-humidity Retrieval Algorithms of Satellite MW Data Processing","authors":"V. Savorskiy, D. Ermakov, B. Kutuza, A. Chernushich, M. Smirnov, O. Panova, M. Danilychev","doi":"10.1109/PIERS-Spring46901.2019.9017771","DOIUrl":null,"url":null,"abstract":"Additional a priori and/or supplementary information on the state of the atmosphere potentially improves the efficiency of retrieval algorithms in comparison to the usage of mean climatic statistics of the atmosphere. Exploration and evaluation of the efficiency of the application of such additional information is the main point of this work. To achieve this goal, this work investigates the statistical approach expansion by including new types of a priori information about the temperaturehumidity state of the atmosphere. The developed methodology introduces an efficiency measure that allows the estimation of the efficiency of the following a priori information types for atmospheric profile retrieval from satellite MW data processing: 1) covariance matrices of the full vector temperature-humidity state of the atmosphere along a vertical profile, 2) covariance matrices of atmosphere variations along the atmospheres horizontal layer, and 3) physical limits of humidity profile variations. The results of atmospheric profile retrieval, based on the Levenberg-Marquardt algorithm, confirm the possibility of using this approach to restore atmospheric parameters in real time, i.e. for times shorter than the correlation intervals in the atmosphere.","PeriodicalId":446190,"journal":{"name":"2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIERS-Spring46901.2019.9017771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Additional a priori and/or supplementary information on the state of the atmosphere potentially improves the efficiency of retrieval algorithms in comparison to the usage of mean climatic statistics of the atmosphere. Exploration and evaluation of the efficiency of the application of such additional information is the main point of this work. To achieve this goal, this work investigates the statistical approach expansion by including new types of a priori information about the temperaturehumidity state of the atmosphere. The developed methodology introduces an efficiency measure that allows the estimation of the efficiency of the following a priori information types for atmospheric profile retrieval from satellite MW data processing: 1) covariance matrices of the full vector temperature-humidity state of the atmosphere along a vertical profile, 2) covariance matrices of atmosphere variations along the atmospheres horizontal layer, and 3) physical limits of humidity profile variations. The results of atmospheric profile retrieval, based on the Levenberg-Marquardt algorithm, confirm the possibility of using this approach to restore atmospheric parameters in real time, i.e. for times shorter than the correlation intervals in the atmosphere.
卫星微波数据处理中温湿度检索算法的改进
与使用大气平均气候统计数据相比,关于大气状态的额外先验和/或补充信息可能提高检索算法的效率。探索和评价这些附加信息的应用效率是本工作的重点。为了实现这一目标,本工作通过包括关于大气温度湿度状态的新型先验信息来研究统计方法的扩展。所开发的方法引入了一种效率度量,允许对以下先验信息类型的效率进行估计,以便从卫星MW数据处理中检索大气剖面:1)沿垂直剖面的全矢量大气温度-湿度状态的协方差矩阵,2)沿大气水平层的大气变化协方差矩阵,以及3)湿度剖面变化的物理极限。基于Levenberg-Marquardt算法的大气廓线检索结果证实了使用该方法实时恢复大气参数的可能性,即比大气中的相关间隔短几倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信