Automatic Driving of End-to-end Convolutional Neural Network Based on MobileNet-V2 Migration Learning

Minghong Hu, Hui Guo, Xuyuan Ji
{"title":"Automatic Driving of End-to-end Convolutional Neural Network Based on MobileNet-V2 Migration Learning","authors":"Minghong Hu, Hui Guo, Xuyuan Ji","doi":"10.1145/3356422.3356458","DOIUrl":null,"url":null,"abstract":"Convolutional neural network is gradually mature, followed by the arrival of 5G era, autonomous driving will become a development hotspot. MobileNet is a Convolutional Neural Network used depthwise separable convolutions to decrease parameters so that the devices with limited resources can use it to complete image recognition. In this paper, we use MobileNet-V2 migration learning improvement to simulate automatic driving steering on embedded devices. In this experiment, in our data set, we compared Nvidia end-to-end automated driving network with our migration learning neural network based on MobileNet-V2 end-to-end convolution. The improved MobileNet-V2 network can works on raspberries pi only has CPU faster and real-time prediction to keep in the lane line, ensure the model to reduce the number of parameter at the same time, the identification error decreases.","PeriodicalId":197051,"journal":{"name":"Proceedings of the 12th International Symposium on Visual Information Communication and Interaction","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Symposium on Visual Information Communication and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3356422.3356458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Convolutional neural network is gradually mature, followed by the arrival of 5G era, autonomous driving will become a development hotspot. MobileNet is a Convolutional Neural Network used depthwise separable convolutions to decrease parameters so that the devices with limited resources can use it to complete image recognition. In this paper, we use MobileNet-V2 migration learning improvement to simulate automatic driving steering on embedded devices. In this experiment, in our data set, we compared Nvidia end-to-end automated driving network with our migration learning neural network based on MobileNet-V2 end-to-end convolution. The improved MobileNet-V2 network can works on raspberries pi only has CPU faster and real-time prediction to keep in the lane line, ensure the model to reduce the number of parameter at the same time, the identification error decreases.
基于MobileNet-V2迁移学习的端到端卷积神经网络自动驾驶
卷积神经网络逐渐成熟,随之而来的是5G时代的到来,自动驾驶将成为一个发展热点。MobileNet是一种卷积神经网络,它使用深度可分离卷积来减少参数,使有限资源的设备可以使用它来完成图像识别。在本文中,我们使用MobileNet-V2迁移学习改进来模拟嵌入式设备上的自动驾驶转向。在这个实验中,在我们的数据集中,我们比较了Nvidia端到端自动驾驶网络和我们基于MobileNet-V2端到端卷积的迁移学习神经网络。改进后的MobileNet-V2网络可以在树莓派上工作,只有CPU速度更快,并且实时预测保持在车道线上,保证模型参数数量减少的同时,识别误差减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信