Reducing semantic drift in bootstrapping for entity relation extraction

Chen Sijia, Li Yan, Chen Guang
{"title":"Reducing semantic drift in bootstrapping for entity relation extraction","authors":"Chen Sijia, Li Yan, Chen Guang","doi":"10.1109/MEC.2013.6885371","DOIUrl":null,"url":null,"abstract":"This paper presents a novel bootstrapping algorithm for entity relation extraction. Shortest dependency patterns connecting entity pairs in sentences are captured initially and in turn applied to extract new binary relationships. The patterns are evaluated through correlation detection. In addition, we effectively prevent semantic drift by co-training with trigger words. Experiments for slot filling on the Knowledge Base Population (KBP) newspaper corpora show that our enhanced bootstrapping system achieves an 11% F1-score improvement over traditional bootstrapping algorithm.","PeriodicalId":196304,"journal":{"name":"Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEC.2013.6885371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a novel bootstrapping algorithm for entity relation extraction. Shortest dependency patterns connecting entity pairs in sentences are captured initially and in turn applied to extract new binary relationships. The patterns are evaluated through correlation detection. In addition, we effectively prevent semantic drift by co-training with trigger words. Experiments for slot filling on the Knowledge Base Population (KBP) newspaper corpora show that our enhanced bootstrapping system achieves an 11% F1-score improvement over traditional bootstrapping algorithm.
减少实体关系抽取自举过程中的语义漂移
提出了一种新的实体关系抽取自举算法。最初捕获连接句子中实体对的最短依赖模式,然后应用于提取新的二元关系。通过相关性检测对模式进行评估。此外,我们通过与触发词的协同训练有效地防止了语义漂移。在KBP (Knowledge Base Population)报纸语料库上进行的槽填充实验表明,改进的自举算法比传统的自举算法提高了11%的f1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信