Query optimization in microsoft SQL server PDW

S. Shankar, Rimma V. Nehme, J. Aguilar-Saborit, Andrew Chung, Mostafa Elhemali, A. Halverson, Eric Robinson, Mahadevan Subramanian, D. DeWitt, C. Galindo-Legaria
{"title":"Query optimization in microsoft SQL server PDW","authors":"S. Shankar, Rimma V. Nehme, J. Aguilar-Saborit, Andrew Chung, Mostafa Elhemali, A. Halverson, Eric Robinson, Mahadevan Subramanian, D. DeWitt, C. Galindo-Legaria","doi":"10.1145/2213836.2213953","DOIUrl":null,"url":null,"abstract":"In recent years, Massively Parallel Processors have increasingly been used to manage and query vast amounts of data. Dramatic performance improvements are achieved through distributed execution of queries across many nodes. Query optimization for such system is a challenging and important problem. In this paper we describe the Query Optimizer inside the SQL Server Parallel Data Warehouse product (PDW QO). We leverage existing QO technology in Microsoft SQL Server to implement a cost-based optimizer for distributed query execution. By properly abstracting metadata we can readily reuse existing logic for query simplification, space exploration and cardinality estimation. Unlike earlier approaches that simply parallelize the best serial plan, our optimizer considers a rich space of execution alternatives, and picks one based on a cost-model for the distributed execution environment. The result is a high-quality, effective query optimizer for distributed query processing in an MPP.","PeriodicalId":212616,"journal":{"name":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213836.2213953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

In recent years, Massively Parallel Processors have increasingly been used to manage and query vast amounts of data. Dramatic performance improvements are achieved through distributed execution of queries across many nodes. Query optimization for such system is a challenging and important problem. In this paper we describe the Query Optimizer inside the SQL Server Parallel Data Warehouse product (PDW QO). We leverage existing QO technology in Microsoft SQL Server to implement a cost-based optimizer for distributed query execution. By properly abstracting metadata we can readily reuse existing logic for query simplification, space exploration and cardinality estimation. Unlike earlier approaches that simply parallelize the best serial plan, our optimizer considers a rich space of execution alternatives, and picks one based on a cost-model for the distributed execution environment. The result is a high-quality, effective query optimizer for distributed query processing in an MPP.
microsoft SQL server PDW中的查询优化
近年来,大规模并行处理器越来越多地用于管理和查询大量数据。通过跨多个节点分布式执行查询,可以实现显著的性能改进。对此类系统的查询优化是一个具有挑战性的重要问题。本文描述了SQL Server并行数据仓库产品(PDW QO)中的查询优化器。我们利用Microsoft SQL Server中现有的QO技术来实现一个基于成本的分布式查询执行优化器。通过适当地抽象元数据,我们可以很容易地重用现有的逻辑来简化查询、空间探索和基数估计。与早期简单地并行化最佳串行计划的方法不同,我们的优化器考虑了执行备选方案的丰富空间,并根据分布式执行环境的成本模型选择一个。其结果是为MPP中的分布式查询处理提供了一个高质量、有效的查询优化器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信