Oracle Workload Intelligence

Quoc Trung Tran, Konstantinos Morfonios, N. Polyzotis
{"title":"Oracle Workload Intelligence","authors":"Quoc Trung Tran, Konstantinos Morfonios, N. Polyzotis","doi":"10.1145/2723372.2742791","DOIUrl":null,"url":null,"abstract":"Analyzing and understanding the characteristics of the incoming workload is crucial in unraveling trends and tuning the performance of a database system. In this work, we present Oracle Workload Intelligence (WI), a tool for workload modeling and mining, as our attempt to infer the processes that generate a given workload. WI consists of two main functionalities. First, WI derives a model that captures the main characteristics of the workload without overfitting, which makes it likely to generalize well to unseen instances of the workload. Such a model provides insights into the most frequent code paths in the application that drives the workload, and also enables optimizations inside the database system that target sequences of query statements. Second, WI can compare the models of different snapshots of the workload to detect whether the workload has changed. Such changes might indicate new trends, regressions, problems, or even security issues. We demonstrate the effectiveness of WI with an experimental study on synthetic workloads and customer-provided application benchmarks.","PeriodicalId":168391,"journal":{"name":"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data","volume":"18 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2723372.2742791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Analyzing and understanding the characteristics of the incoming workload is crucial in unraveling trends and tuning the performance of a database system. In this work, we present Oracle Workload Intelligence (WI), a tool for workload modeling and mining, as our attempt to infer the processes that generate a given workload. WI consists of two main functionalities. First, WI derives a model that captures the main characteristics of the workload without overfitting, which makes it likely to generalize well to unseen instances of the workload. Such a model provides insights into the most frequent code paths in the application that drives the workload, and also enables optimizations inside the database system that target sequences of query statements. Second, WI can compare the models of different snapshots of the workload to detect whether the workload has changed. Such changes might indicate new trends, regressions, problems, or even security issues. We demonstrate the effectiveness of WI with an experimental study on synthetic workloads and customer-provided application benchmarks.
Oracle工作负载智能
分析和理解传入工作负载的特征对于揭示趋势和调优数据库系统的性能至关重要。在这项工作中,我们介绍了Oracle工作负载智能(WI),这是一个用于工作负载建模和挖掘的工具,我们试图推断生成给定工作负载的过程。WI包括两个主要功能。首先,WI派生了一个模型,该模型捕获了工作负载的主要特征,而不会过度拟合,这使得它很可能泛化到工作负载的未见实例。这样的模型提供了对驱动工作负载的应用程序中最常见的代码路径的深入了解,并且还支持针对查询语句序列的数据库系统内部的优化。其次,WI可以比较工作负载的不同快照的模型,以检测工作负载是否发生了变化。这些变化可能表明新的趋势、倒退、问题,甚至安全问题。我们通过对合成工作负载和客户提供的应用程序基准的实验研究来证明WI的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信