Evaluating the Morphological and Capitalization Features for Word Embedding-Based POS Tagger in Bahasa Indonesia

L. Manik, Arida Ferti Syafiandini, Hani Febri Mustika, Achmad Fatchuttamam Abka, Y. Rianto
{"title":"Evaluating the Morphological and Capitalization Features for Word Embedding-Based POS Tagger in Bahasa Indonesia","authors":"L. Manik, Arida Ferti Syafiandini, Hani Febri Mustika, Achmad Fatchuttamam Abka, Y. Rianto","doi":"10.1109/IC3INA.2018.8629519","DOIUrl":null,"url":null,"abstract":"In this paper, morphological and capitalization features are employed to improve the current word embedding-based POS tagger for Bahasa Indonesia. The experiments are conducted with an architecture based on neural network model, that is a simple feedforward neural network with two input layers, one merge layer, and two hidden layers. The first input layer uses word embeddings (CBOW and Skip-gram) feature as the input while the second input layer uses morphological and capitalization features. The results show that the selected additional features improve the performance and accuracy of current word embedding-based POS tagger, although it is not really significant. The F1 score averages of all word embedding types are increasing from 93% to 94% and the accuracies are increasing from 92-93% to 94-95% on manually tagged corpus of about 250,000 tokens (12,775 unique tokens).","PeriodicalId":179466,"journal":{"name":"2018 International Conference on Computer, Control, Informatics and its Applications (IC3INA)","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Computer, Control, Informatics and its Applications (IC3INA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3INA.2018.8629519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, morphological and capitalization features are employed to improve the current word embedding-based POS tagger for Bahasa Indonesia. The experiments are conducted with an architecture based on neural network model, that is a simple feedforward neural network with two input layers, one merge layer, and two hidden layers. The first input layer uses word embeddings (CBOW and Skip-gram) feature as the input while the second input layer uses morphological and capitalization features. The results show that the selected additional features improve the performance and accuracy of current word embedding-based POS tagger, although it is not really significant. The F1 score averages of all word embedding types are increasing from 93% to 94% and the accuracies are increasing from 92-93% to 94-95% on manually tagged corpus of about 250,000 tokens (12,775 unique tokens).
印尼语基于词嵌入的POS标注器的词法和大写特征评价
本文利用词形和大写特征对目前基于词嵌入的印尼语词性标注器进行改进。实验采用了一种基于神经网络模型的结构,即一个具有两个输入层、一个合并层和两个隐藏层的简单前馈神经网络。第一个输入层使用词嵌入(CBOW和Skip-gram)特征作为输入,而第二个输入层使用形态学和大写特征。结果表明,选择的附加特征提高了当前基于词嵌入的词性标注器的性能和准确性,尽管效果并不显著。所有词嵌入类型的F1平均得分从93%增加到94%,准确率从92-93%增加到94-95%,人工标记约250,000个标记(12,775个唯一标记)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信