MusicSense

Rui Cai, Chao Zhang, Chong Wang, Lei Zhang, Wei-Ying Ma
{"title":"MusicSense","authors":"Rui Cai, Chao Zhang, Chong Wang, Lei Zhang, Wei-Ying Ma","doi":"10.1145/1291233.1291369","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel contextual music recommendation approach, MusicSense, to automatically suggest music when users read Web documents such as Weblogs. MusicSense matches music to a document's content, in terms of the emotions expressed by both the document and the music songs. To achieve this, we propose a generative model - Emotional Allocation Modeling - in which a collection of word terms is considered as generated with a mixture of emotions. This model also integrates knowledge discovering from a Web-scale corpus and guidance from psychological studies of emotion. Music songs are also described using textual information extracted from their meta-data and relevant Web pages. Thus, both music songs and Web documents can be characterized as distributions over the emotion mixtures through the emotional allocation modeling. For a given document, the songs with the most matched emotion distributions are finally selected as the recommendations. Preliminary experiments on Weblogs show promising results on both emotion allocation and music recommendation.","PeriodicalId":304809,"journal":{"name":"Proceedings of the 15th international conference on Multimedia - MULTIMEDIA '07","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th international conference on Multimedia - MULTIMEDIA '07","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1291233.1291369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 107

Abstract

In this paper, we present a novel contextual music recommendation approach, MusicSense, to automatically suggest music when users read Web documents such as Weblogs. MusicSense matches music to a document's content, in terms of the emotions expressed by both the document and the music songs. To achieve this, we propose a generative model - Emotional Allocation Modeling - in which a collection of word terms is considered as generated with a mixture of emotions. This model also integrates knowledge discovering from a Web-scale corpus and guidance from psychological studies of emotion. Music songs are also described using textual information extracted from their meta-data and relevant Web pages. Thus, both music songs and Web documents can be characterized as distributions over the emotion mixtures through the emotional allocation modeling. For a given document, the songs with the most matched emotion distributions are finally selected as the recommendations. Preliminary experiments on Weblogs show promising results on both emotion allocation and music recommendation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信