{"title":"Electrocardiogram Beat Classification Using BAT-Optimized Fuzzy KNN Classifier","authors":"A. Verma, I. Saini, B. Saini","doi":"10.4018/978-1-5225-7952-6.CH007","DOIUrl":null,"url":null,"abstract":"In this chapter, the BAT-optimized fuzzy k-nearest neighbor (FKNN-BAT) algorithm is proposed for discrimination of the electrocardiogram (ECG) beats. The five types of beats (i.e., normal [N], right bundle block branch [RBBB], left bundle block branch [LBBB], atrial premature contraction [APC], and premature ventricular contraction [PVC]) are taken from MIT-BIH arrhythmia database for the experimentation. Thereafter, the features are extracted from five type of beats and fed to the proposed BAT-tuned fuzzy KNN classifier. The proposed classifier achieves the overall accuracy of 99.88%.","PeriodicalId":416673,"journal":{"name":"Medical Data Security for Bioengineers","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Data Security for Bioengineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-7952-6.CH007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this chapter, the BAT-optimized fuzzy k-nearest neighbor (FKNN-BAT) algorithm is proposed for discrimination of the electrocardiogram (ECG) beats. The five types of beats (i.e., normal [N], right bundle block branch [RBBB], left bundle block branch [LBBB], atrial premature contraction [APC], and premature ventricular contraction [PVC]) are taken from MIT-BIH arrhythmia database for the experimentation. Thereafter, the features are extracted from five type of beats and fed to the proposed BAT-tuned fuzzy KNN classifier. The proposed classifier achieves the overall accuracy of 99.88%.