Electrocardiogram Beat Classification Using BAT-Optimized Fuzzy KNN Classifier

A. Verma, I. Saini, B. Saini
{"title":"Electrocardiogram Beat Classification Using BAT-Optimized Fuzzy KNN Classifier","authors":"A. Verma, I. Saini, B. Saini","doi":"10.4018/978-1-5225-7952-6.CH007","DOIUrl":null,"url":null,"abstract":"In this chapter, the BAT-optimized fuzzy k-nearest neighbor (FKNN-BAT) algorithm is proposed for discrimination of the electrocardiogram (ECG) beats. The five types of beats (i.e., normal [N], right bundle block branch [RBBB], left bundle block branch [LBBB], atrial premature contraction [APC], and premature ventricular contraction [PVC]) are taken from MIT-BIH arrhythmia database for the experimentation. Thereafter, the features are extracted from five type of beats and fed to the proposed BAT-tuned fuzzy KNN classifier. The proposed classifier achieves the overall accuracy of 99.88%.","PeriodicalId":416673,"journal":{"name":"Medical Data Security for Bioengineers","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Data Security for Bioengineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-7952-6.CH007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this chapter, the BAT-optimized fuzzy k-nearest neighbor (FKNN-BAT) algorithm is proposed for discrimination of the electrocardiogram (ECG) beats. The five types of beats (i.e., normal [N], right bundle block branch [RBBB], left bundle block branch [LBBB], atrial premature contraction [APC], and premature ventricular contraction [PVC]) are taken from MIT-BIH arrhythmia database for the experimentation. Thereafter, the features are extracted from five type of beats and fed to the proposed BAT-tuned fuzzy KNN classifier. The proposed classifier achieves the overall accuracy of 99.88%.
基于蝙蝠优化模糊KNN分类器的心电图心率分类
在本章中,提出了一种基于bat优化的模糊k近邻(FKNN-BAT)算法用于心电(ECG)心跳的识别。取MIT-BIH心律失常数据库中正常[N]、右束传导阻滞支[RBBB]、左束传导阻滞支[LBBB]、房性早搏[APC]、室性早搏[PVC]五种心跳类型进行实验。然后,从五种类型的节拍中提取特征并将其输入到所提出的蝙蝠调谐模糊KNN分类器中。该分类器总体准确率达到99.88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信