A Study on Detecting Network Anomalies Using Sampled Flow Statistics

R. Kawahara, Tatsuya Mori, N. Kamiyama, Shigeaki Harada, S. Asano
{"title":"A Study on Detecting Network Anomalies Using Sampled Flow Statistics","authors":"R. Kawahara, Tatsuya Mori, N. Kamiyama, Shigeaki Harada, S. Asano","doi":"10.1109/SAINT-W.2007.17","DOIUrl":null,"url":null,"abstract":"We investigate how to detect network anomalies using flow statistics obtained through packet sampling. First, we show that network anomalies generating a huge number of small flows, such as network scans or SYN flooding, become difficult to detect when we execute packet sampling. This is because such flows are more unlikely to be sampled than normal flows. As a solution to this problem, we then show that spatially partitioning the monitored traffic into groups and analyzing the traffic of individual groups can increase the detectability of such anomalies. We also show the effectiveness of the partitioning method using network measurement data","PeriodicalId":254195,"journal":{"name":"2007 International Symposium on Applications and the Internet Workshops","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Applications and the Internet Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAINT-W.2007.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We investigate how to detect network anomalies using flow statistics obtained through packet sampling. First, we show that network anomalies generating a huge number of small flows, such as network scans or SYN flooding, become difficult to detect when we execute packet sampling. This is because such flows are more unlikely to be sampled than normal flows. As a solution to this problem, we then show that spatially partitioning the monitored traffic into groups and analyzing the traffic of individual groups can increase the detectability of such anomalies. We also show the effectiveness of the partitioning method using network measurement data
基于采样流量统计的网络异常检测研究
我们研究了如何使用通过数据包采样获得的流量统计来检测网络异常。首先,我们展示了产生大量小流量的网络异常,例如网络扫描或SYN泛洪,在执行包采样时变得难以检测。这是因为这样的流比正常流更不可能被采样。为了解决这一问题,我们展示了将被监控的流量在空间上划分成组并分析单个组的流量可以提高这种异常的可检测性。我们还利用网络测量数据证明了划分方法的有效性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信