An integrated framework of vision-based vehicle detection with knowledge fusion

Ying Zhu, D. Comaniciu, Visvanathan Ramesh, M. Pellkofer, T. Koehler, Siemens Vdo, Automotive Ag
{"title":"An integrated framework of vision-based vehicle detection with knowledge fusion","authors":"Ying Zhu, D. Comaniciu, Visvanathan Ramesh, M. Pellkofer, T. Koehler, Siemens Vdo, Automotive Ag","doi":"10.1109/IVS.2005.1505102","DOIUrl":null,"url":null,"abstract":"This paper describes an integrated framework of on-road vehicle detection through knowledge fusion. In contrast to appearance-based detectors that make instant decisions, the proposed detection framework fuses appearance, geometry and motion information over multiple image frames. The knowledge of vehicle/non-vehicle appearance, scene geometry and vehicle motion is utilized through prior models obtained by learning, modeling and estimation algorithms. It is shown that knowledge fusion largely improves the robustness and reliability of the detection system.","PeriodicalId":386189,"journal":{"name":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2005.1505102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

This paper describes an integrated framework of on-road vehicle detection through knowledge fusion. In contrast to appearance-based detectors that make instant decisions, the proposed detection framework fuses appearance, geometry and motion information over multiple image frames. The knowledge of vehicle/non-vehicle appearance, scene geometry and vehicle motion is utilized through prior models obtained by learning, modeling and estimation algorithms. It is shown that knowledge fusion largely improves the robustness and reliability of the detection system.
基于视觉与知识融合的车辆检测集成框架
本文提出了一种基于知识融合的道路车辆检测集成框架。与即时做出决定的基于外观的检测器相比,所提出的检测框架融合了多个图像帧的外观,几何形状和运动信息。通过学习、建模和估计算法获得的先验模型,利用车辆/非车辆外观、场景几何和车辆运动等知识。研究表明,知识融合极大地提高了检测系统的鲁棒性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信