Mathematical modelling for malaria under resistance and population movement

Cristhian Montoya, J. P. R. Leitón
{"title":"Mathematical modelling for malaria under resistance and population movement","authors":"Cristhian Montoya, J. P. R. Leitón","doi":"10.18273/revint.v38n2-2020006","DOIUrl":null,"url":null,"abstract":"In this work, two mathematical models for malaria under resistance are presented. More precisely, the first model shows the interaction between humans and mosquitoes inside a patch under infection of malaria when the human population is resistant to antimalarial drug and mosquitoes population is resistant to insecticides. For the second model, human–mosquitoes population movements in two patches is analyzed under the same malaria transmission dynamic established in a patch. For a single patch, existence and stability conditions for the equilibrium solutions in terms of the local basic reproductive number are developed. These results reveal the existence of a forward bifurcation and the global stability of disease–free equilibrium. In the case of two patches, a theoretical and numerical framework on sensitivity analysis of parameters is presented. After that, the use of antimalarial drugs and insecticides are incorporated as control strategies and an optimal control problem is formulated. Numerical experiments are carried out in both models to show the feasibility of our theoretical results.","PeriodicalId":173965,"journal":{"name":"Revista integración, temas de matemáticas","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista integración, temas de matemáticas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18273/revint.v38n2-2020006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, two mathematical models for malaria under resistance are presented. More precisely, the first model shows the interaction between humans and mosquitoes inside a patch under infection of malaria when the human population is resistant to antimalarial drug and mosquitoes population is resistant to insecticides. For the second model, human–mosquitoes population movements in two patches is analyzed under the same malaria transmission dynamic established in a patch. For a single patch, existence and stability conditions for the equilibrium solutions in terms of the local basic reproductive number are developed. These results reveal the existence of a forward bifurcation and the global stability of disease–free equilibrium. In the case of two patches, a theoretical and numerical framework on sensitivity analysis of parameters is presented. After that, the use of antimalarial drugs and insecticides are incorporated as control strategies and an optimal control problem is formulated. Numerical experiments are carried out in both models to show the feasibility of our theoretical results.
疟疾在抵抗和人口流动下的数学模型
在这项工作中,提出了疟疾在耐药性下的两个数学模型。更准确地说,第一个模型显示了当人类种群对抗疟疾药物具有耐药性,而蚊子种群对杀虫剂具有耐药性时,感染疟疾的斑块内人类与蚊子之间的相互作用。对于第二个模型,在同一斑块中建立的相同疟疾传播动态下,分析了两个斑块中人蚊种群的移动。对于单个斑块,给出了基于局部基本繁殖数的平衡解的存在性和稳定性条件。这些结果揭示了正向分岔的存在性和无病平衡的全局稳定性。在两个补丁的情况下,给出了参数灵敏度分析的理论和数值框架。之后,将抗疟药物和杀虫剂的使用纳入控制策略,并制定最优控制问题。对两种模型进行了数值实验,验证了理论结果的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信