DFedForest: Decentralized Federated Forest

Lucas Airam C. de Souza, G. Rebello, G. Camilo, Lucas C. B. Guimarães, O. Duarte
{"title":"DFedForest: Decentralized Federated Forest","authors":"Lucas Airam C. de Souza, G. Rebello, G. Camilo, Lucas C. B. Guimarães, O. Duarte","doi":"10.1109/Blockchain50366.2020.00019","DOIUrl":null,"url":null,"abstract":"The effectiveness of machine learning systems depends heavily on the relevance of the training data. Usually, the collected data is sensitive and private because it comes from devices and sensors used in people’s daily lives. The General Data Protection Regulation (GDPR) in Europe, the California Consumer Privacy Act (CCPA) in California, and China’s Cybersecurity Law put the current approach at risk, as it prohibits centralized remote processing of sensitive data collected in a distributed manner. This paper proposes a distributed machine learning system based on local random forest algorithms created with shared decision trees through the blockchain. The results show that the proposed approach equals or exceeds the results obtained with the use of random forests with only local data. Furthermore, the proposal increases the detection of new attacks when the domains have different threat distributions.","PeriodicalId":109440,"journal":{"name":"2020 IEEE International Conference on Blockchain (Blockchain)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Blockchain (Blockchain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Blockchain50366.2020.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

The effectiveness of machine learning systems depends heavily on the relevance of the training data. Usually, the collected data is sensitive and private because it comes from devices and sensors used in people’s daily lives. The General Data Protection Regulation (GDPR) in Europe, the California Consumer Privacy Act (CCPA) in California, and China’s Cybersecurity Law put the current approach at risk, as it prohibits centralized remote processing of sensitive data collected in a distributed manner. This paper proposes a distributed machine learning system based on local random forest algorithms created with shared decision trees through the blockchain. The results show that the proposed approach equals or exceeds the results obtained with the use of random forests with only local data. Furthermore, the proposal increases the detection of new attacks when the domains have different threat distributions.
DFedForest:分散联邦森林
机器学习系统的有效性在很大程度上取决于训练数据的相关性。通常,收集的数据是敏感和隐私的,因为它来自人们日常生活中使用的设备和传感器。欧洲的《通用数据保护条例》(GDPR)、加州的《加州消费者隐私法》(CCPA)和中国的《网络安全法》都将当前的方法置于危险之中,因为它禁止以分布式方式对收集的敏感数据进行集中远程处理。本文提出了一种基于局部随机森林算法的分布式机器学习系统,该算法通过区块链由共享决策树创建。结果表明,所提出的方法等于或超过了仅使用局部数据的随机森林方法的结果。此外,该方案还增加了在不同威胁分布的域中检测新攻击的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信