From data to knowledge: city-wide traffic flows analysis and prediction using bing maps

A. Ribeiro, Fatima de L. P. Duarte-Figueiredo, R. Assunção, Juliana F. S. Salles, A. Loureiro
{"title":"From data to knowledge: city-wide traffic flows analysis and prediction using bing maps","authors":"A. Ribeiro, Fatima de L. P. Duarte-Figueiredo, R. Assunção, Juliana F. S. Salles, A. Loureiro","doi":"10.1145/2505821.2505831","DOIUrl":null,"url":null,"abstract":"Traffic jam is a common contemporary society issue in urban areas. City-wide traffic modeling, visualization, analysis, and prediction are still challenges in this context. Based on Bing Maps information, this work aims to acquire, aggregate, analyze, visualize, and predict traffic jam. Chicago area was evaluated as case study. The flow intensity (free or congested) was analyzed to allow the identification of phase transitions (shocks in the system). Also, a prediction model was developed based on logistic regression to correct discovery future flow intensities for a target street.","PeriodicalId":157169,"journal":{"name":"UrbComp '13","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UrbComp '13","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505821.2505831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

Traffic jam is a common contemporary society issue in urban areas. City-wide traffic modeling, visualization, analysis, and prediction are still challenges in this context. Based on Bing Maps information, this work aims to acquire, aggregate, analyze, visualize, and predict traffic jam. Chicago area was evaluated as case study. The flow intensity (free or congested) was analyzed to allow the identification of phase transitions (shocks in the system). Also, a prediction model was developed based on logistic regression to correct discovery future flow intensities for a target street.
从数据到知识:使用必应地图分析和预测全市交通流量
交通堵塞是当代城市地区普遍存在的社会问题。在这种情况下,城市范围内的交通建模、可视化、分析和预测仍然是一个挑战。基于必应地图信息,这项工作旨在获取、汇总、分析、可视化和预测交通拥堵。芝加哥地区被评价为案例研究。分析了流动强度(自由或堵塞),以便识别相变(系统中的冲击)。此外,还建立了一个基于逻辑回归的预测模型,以正确发现目标街道的未来流量强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信