Visualizing Prediction Correctness of Eye Tracking Classifiers

Martin H. U. Prinzler, Christoph Schröder, Sahar Mahdie Klim Al Zaidawi, G. Zachmann, S. Maneth
{"title":"Visualizing Prediction Correctness of Eye Tracking Classifiers","authors":"Martin H. U. Prinzler, Christoph Schröder, Sahar Mahdie Klim Al Zaidawi, G. Zachmann, S. Maneth","doi":"10.1145/3448018.3457997","DOIUrl":null,"url":null,"abstract":"Eye tracking data is often used to train machine learning algorithms for classification tasks. The main indicator of performance for such classifiers is typically their prediction accuracy. However, this number does not reveal any information about the specific intrinsic workings of the classifier. In this paper we introduce novel visualization methods which are able to provide such information. We introduce the Prediction Correctness Value (PCV). It is the difference between the calculated probability for the correct class and the maximum calculated probability for any other class. Based on the PCV we present two visualizations: (1) coloring segments of eye tracking trajectories according to their PCV, thus indicating how beneficial certain parts are towards correct classification, and (2) overlaying similar information for all participants to produce a heatmap that indicates at which places fixations are particularly beneficial towards correct classification. Using these new visualizations we compare the performance of two classifiers (RF and RBFN).","PeriodicalId":226088,"journal":{"name":"ACM Symposium on Eye Tracking Research and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448018.3457997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Eye tracking data is often used to train machine learning algorithms for classification tasks. The main indicator of performance for such classifiers is typically their prediction accuracy. However, this number does not reveal any information about the specific intrinsic workings of the classifier. In this paper we introduce novel visualization methods which are able to provide such information. We introduce the Prediction Correctness Value (PCV). It is the difference between the calculated probability for the correct class and the maximum calculated probability for any other class. Based on the PCV we present two visualizations: (1) coloring segments of eye tracking trajectories according to their PCV, thus indicating how beneficial certain parts are towards correct classification, and (2) overlaying similar information for all participants to produce a heatmap that indicates at which places fixations are particularly beneficial towards correct classification. Using these new visualizations we compare the performance of two classifiers (RF and RBFN).
眼动追踪分类器预测正确性的可视化
眼动追踪数据通常用于训练分类任务的机器学习算法。这类分类器的主要性能指标通常是它们的预测精度。然而,这个数字并没有透露任何关于分类器具体内在工作的信息。在本文中,我们介绍了能够提供这些信息的新的可视化方法。我们引入了预测正确率(PCV)。它是正确类别的计算概率与任何其他类别的最大计算概率之间的差。基于PCV,我们提出了两种可视化方法:(1)根据他们的PCV为眼动轨迹分段上色,从而表明某些部分对正确分类有多有利;(2)覆盖所有参与者的类似信息以产生热图,表明哪些地方的注视对正确分类特别有利。使用这些新的可视化,我们比较了两个分类器(RF和RBFN)的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信