{"title":"Detecting Fraud in Narrative Annual Reports","authors":"Yuh-Jen Chen","doi":"10.2139/ssrn.2511629","DOIUrl":null,"url":null,"abstract":"Annual reports present the activities of a listed company in terms of its operational performance, financial conditions, and social responsibilities. These reports also provide valuable reference for numerous investors, creditors, or other accounting information end-users. However, many annual reports exaggerate enterprise activities to raise investor capital and support from financial institutions, thereby diminishing the usefulness of such reports. Effectively detecting fraud in the annual report of a company is thus of priority concern during an audit. Therefore, this work develops a novel fraud detection method for narrative annual reports to effectively detect fraud in the narrative annual report of a company in order to reduce investment losses and investor- and creditor-related risks, as well as enhance investment decisions. A developmental procedure of fraud detection is designed for narrative annual reports. Fraud detection-related techniques are then developed for narrative annual reports, followed by a demonstration and evaluation of the proposed fraud detection method. Fraud detection-related techniques for narrative annual reports consist mainly of establishing a fraudulent feature term library and clustering fraudulent and non-fraudulent narrative annual reports. Moreover, establishing fraudulent feature term library involves data preprocessing, term-pair combination, and filtering of fraudulent feature terms.","PeriodicalId":114900,"journal":{"name":"LSN: Corporate Governance International (Topic)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"LSN: Corporate Governance International (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2511629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Annual reports present the activities of a listed company in terms of its operational performance, financial conditions, and social responsibilities. These reports also provide valuable reference for numerous investors, creditors, or other accounting information end-users. However, many annual reports exaggerate enterprise activities to raise investor capital and support from financial institutions, thereby diminishing the usefulness of such reports. Effectively detecting fraud in the annual report of a company is thus of priority concern during an audit. Therefore, this work develops a novel fraud detection method for narrative annual reports to effectively detect fraud in the narrative annual report of a company in order to reduce investment losses and investor- and creditor-related risks, as well as enhance investment decisions. A developmental procedure of fraud detection is designed for narrative annual reports. Fraud detection-related techniques are then developed for narrative annual reports, followed by a demonstration and evaluation of the proposed fraud detection method. Fraud detection-related techniques for narrative annual reports consist mainly of establishing a fraudulent feature term library and clustering fraudulent and non-fraudulent narrative annual reports. Moreover, establishing fraudulent feature term library involves data preprocessing, term-pair combination, and filtering of fraudulent feature terms.