A P300-based BCI classification algorithm using median filtering and Bayesian feature extraction

Xiaoou Li, Feng Wang, Xu Chen, R. Ward
{"title":"A P300-based BCI classification algorithm using median filtering and Bayesian feature extraction","authors":"Xiaoou Li, Feng Wang, Xu Chen, R. Ward","doi":"10.1109/MMSP.2012.6343459","DOIUrl":null,"url":null,"abstract":"A brain computer interface (BCI) system translates a person's brain activity into useful control or communication signals. In this paper, an effective P300-based BCI identification algorithm using median filtering and Bayesian classifier is proposed to improve the classification accuracy and computation efficiency of P300-based BCI. Median filtering is firstly applied to remove noises and Bayesian Linear Discriminant Analysis (BLDA) is then employed for classification. Testing on the P300 speller paradigm in dataset II of 2004 BCI Competition III, we show that a 90% average classification accuracy can be achieved and the highest accuracy is 100%. The proposed method is also computationally efficient and thus it represents a practical implementation for man-computer communication control, especially for on-line applications.","PeriodicalId":325274,"journal":{"name":"2012 IEEE 14th International Workshop on Multimedia Signal Processing (MMSP)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 14th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2012.6343459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A brain computer interface (BCI) system translates a person's brain activity into useful control or communication signals. In this paper, an effective P300-based BCI identification algorithm using median filtering and Bayesian classifier is proposed to improve the classification accuracy and computation efficiency of P300-based BCI. Median filtering is firstly applied to remove noises and Bayesian Linear Discriminant Analysis (BLDA) is then employed for classification. Testing on the P300 speller paradigm in dataset II of 2004 BCI Competition III, we show that a 90% average classification accuracy can be achieved and the highest accuracy is 100%. The proposed method is also computationally efficient and thus it represents a practical implementation for man-computer communication control, especially for on-line applications.
一种基于p300的中值滤波和贝叶斯特征提取的BCI分类算法
脑机接口(BCI)系统将人的大脑活动转化为有用的控制或通信信号。为了提高基于p300的BCI的分类精度和计算效率,本文提出了一种基于中值滤波和贝叶斯分类器的有效的p300 BCI识别算法。首先使用中值滤波去除噪声,然后使用贝叶斯线性判别分析(BLDA)进行分类。在2004年BCI大赛的数据集II上对P300拼写者范式进行了测试,结果表明平均分类准确率达到90%,最高准确率达到100%。该方法计算效率高,为人机通信控制,特别是在线应用提供了一种实用的实现方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信