{"title":"Supervising the self-driving car: situation awareness and fatigue during automated driving","authors":"Angus McKerral, Nathan Boyce, K. Pammer","doi":"10.1145/3349263.3351310","DOIUrl":null,"url":null,"abstract":"The capacity for human drivers to resume control from an automated vehicle remains a central focus of human factors research. Physiological measures promise to allow the vehicle system to determine when a driver is in a ready-state for transition of control, particularly for level 3 automation and above. We employ an adapted measure of Situation Awareness (SA) to assess the quality of driver SA following an extended period of simulated level 3 automated driving. It is hypothesised that a within-subjects design will demonstrate increasing passive fatigue to be predictive of reduced SA following a takeover request. Participants were also randomly allocated to one of two separate conditions in which supervising drivers were either permitted to, or prohibited from the use of non-driving related tasks (NDRT) during automated driving, to investigate a potential avenue for targeted SA enhancement through deliberate NDRT engagement. Preliminary results provide tentative support for our hypotheses.","PeriodicalId":237150,"journal":{"name":"Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349263.3351310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The capacity for human drivers to resume control from an automated vehicle remains a central focus of human factors research. Physiological measures promise to allow the vehicle system to determine when a driver is in a ready-state for transition of control, particularly for level 3 automation and above. We employ an adapted measure of Situation Awareness (SA) to assess the quality of driver SA following an extended period of simulated level 3 automated driving. It is hypothesised that a within-subjects design will demonstrate increasing passive fatigue to be predictive of reduced SA following a takeover request. Participants were also randomly allocated to one of two separate conditions in which supervising drivers were either permitted to, or prohibited from the use of non-driving related tasks (NDRT) during automated driving, to investigate a potential avenue for targeted SA enhancement through deliberate NDRT engagement. Preliminary results provide tentative support for our hypotheses.