Robust markers for visual navigation using Reed-Solomon codes

J. Gubbi, N. Sandeep, K. P. Reddy, P. Balamuralidhar
{"title":"Robust markers for visual navigation using Reed-Solomon codes","authors":"J. Gubbi, N. Sandeep, K. P. Reddy, P. Balamuralidhar","doi":"10.23919/MVA.2017.7986900","DOIUrl":null,"url":null,"abstract":"Indoor navigation of unmanned vehicles in GPS denied environment is challenging but a necessity in many real-world applications. Although fully autonomous indoor navigation has been shown to work using simultaneous localization and mapping (SLAM), its accuracy and robustness are inadequate for commercial applications. A semi-autonomous approach is an option for indoor navigation can be achieved using visual markers such as ArUco. The errors caused by motion of robots, visual artifacts due to change in environmental conditions and other occlusion will impact the reliability of visual markers. In this paper, a new robust visual marker based on ArUco with error detection and correction capability is proposed using Reed-Solomon codes. A dictionary of 50 symbols is generated and tested under different conditions with good results in detection and identification.","PeriodicalId":193716,"journal":{"name":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA.2017.7986900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Indoor navigation of unmanned vehicles in GPS denied environment is challenging but a necessity in many real-world applications. Although fully autonomous indoor navigation has been shown to work using simultaneous localization and mapping (SLAM), its accuracy and robustness are inadequate for commercial applications. A semi-autonomous approach is an option for indoor navigation can be achieved using visual markers such as ArUco. The errors caused by motion of robots, visual artifacts due to change in environmental conditions and other occlusion will impact the reliability of visual markers. In this paper, a new robust visual marker based on ArUco with error detection and correction capability is proposed using Reed-Solomon codes. A dictionary of 50 symbols is generated and tested under different conditions with good results in detection and identification.
使用Reed-Solomon代码的视觉导航稳健标记
无人驾驶车辆在无GPS环境下的室内导航具有挑战性,但在许多实际应用中却是必要的。虽然完全自主的室内导航已经被证明可以使用同步定位和绘图(SLAM),但其准确性和鲁棒性不足以用于商业应用。半自主方法是室内导航的一种选择,可以使用ArUco等视觉标记来实现。机器人运动引起的误差、环境条件变化引起的视觉伪影以及其他遮挡都会影响视觉标记的可靠性。本文采用Reed-Solomon码,提出了一种基于ArUco的具有纠错能力的鲁棒视觉标记。生成了一个包含50个符号的字典,并在不同条件下进行了测试,检测和识别效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信