Parallelizable asychronous by blocks algorithms for neural computing

O. Mahamoudou, P. Bourret
{"title":"Parallelizable asychronous by blocks algorithms for neural computing","authors":"O. Mahamoudou, P. Bourret","doi":"10.1109/CAMP.1995.521071","DOIUrl":null,"url":null,"abstract":"We deal with neural computing parallel algorithms suitable for parallel processing machines and apply them to solve combinatorial optimization problems. Problems are mapped onto a spin glass model then we utilize simulated annealing and mean field theory (MFT) approximation method. It is well known that the main problem of the synchronous algorithms is to be trapped in limit cycles thus we propose an extension of the MFT approximation method of (Boisson, 1993). Though we reduced parallelism, the algorithms proposed are efficient enough to avoid the limit cycles. We obtained good results in solving our NP-hard target problem, the maximum independent set graph problem.","PeriodicalId":277209,"journal":{"name":"Proceedings of Conference on Computer Architectures for Machine Perception","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Conference on Computer Architectures for Machine Perception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMP.1995.521071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We deal with neural computing parallel algorithms suitable for parallel processing machines and apply them to solve combinatorial optimization problems. Problems are mapped onto a spin glass model then we utilize simulated annealing and mean field theory (MFT) approximation method. It is well known that the main problem of the synchronous algorithms is to be trapped in limit cycles thus we propose an extension of the MFT approximation method of (Boisson, 1993). Though we reduced parallelism, the algorithms proposed are efficient enough to avoid the limit cycles. We obtained good results in solving our NP-hard target problem, the maximum independent set graph problem.
神经计算中可并行异步的块算法
研究了适用于并行加工机器的神经计算并行算法,并将其应用于组合优化问题的求解。将问题映射到自旋玻璃模型上,然后利用模拟退火和平均场理论(MFT)逼近方法。众所周知,同步算法的主要问题是被困在极限环中,因此我们提出了(Boisson, 1993)的MFT近似方法的扩展。虽然我们降低了并行度,但所提出的算法足够有效地避免了极限环。我们在求解np -硬目标问题,即最大独立集图问题上取得了很好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信