Cost-Aware and AI-based Resource Prediction in Softwarized Networks

V. Eramo, Francesco Valente, F. Lavacca, T. Catena
{"title":"Cost-Aware and AI-based Resource Prediction in Softwarized Networks","authors":"V. Eramo, Francesco Valente, F. Lavacca, T. Catena","doi":"10.23919/AEIT53387.2021.9626866","DOIUrl":null,"url":null,"abstract":"Resource prediction algorithms have been recently proposed in Network Function Virtualization Architectures. An prediction-based resource allocation is characterized by higher operation costs due to: i) resource underestimate that leads to Quality of Service degradation; ii) used cloud resource over allocation when a resource overestimate occurs. To reduce such a cost, we propose cost-aware prediction algorithm able to minimize the sum of the two cost components previously mentioned. We compare in a real network and traffic scenario the proposed technique to the traditional one in which the Root Mean Squared Error. We show home the proposed solution allows for cost advantages in the order of 20%.","PeriodicalId":138886,"journal":{"name":"2021 AEIT International Annual Conference (AEIT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEIT53387.2021.9626866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Resource prediction algorithms have been recently proposed in Network Function Virtualization Architectures. An prediction-based resource allocation is characterized by higher operation costs due to: i) resource underestimate that leads to Quality of Service degradation; ii) used cloud resource over allocation when a resource overestimate occurs. To reduce such a cost, we propose cost-aware prediction algorithm able to minimize the sum of the two cost components previously mentioned. We compare in a real network and traffic scenario the proposed technique to the traditional one in which the Root Mean Squared Error. We show home the proposed solution allows for cost advantages in the order of 20%.
软件网络中成本感知和基于人工智能的资源预测
最近在网络功能虚拟化体系结构中提出了资源预测算法。基于预测的资源分配的特点是较高的运营成本,这是由于:1)资源低估导致服务质量下降;Ii)发生资源高估时使用的云资源过度分配。为了降低这种成本,我们提出了一种成本感知预测算法,该算法能够最小化前面提到的两个成本组成部分的总和。在一个真实的网络和流量场景中,我们将所提出的技术与传统的均方根误差方法进行了比较。我们展示了所提出的解决方案允许在20%左右的成本优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信