Exploiting local data in parallel array I/O on a practical network of workstations

Yong Cho, M. Winslett, M. Subramaniam, Ying Chen, S. Kuo, K. Seamons
{"title":"Exploiting local data in parallel array I/O on a practical network of workstations","authors":"Yong Cho, M. Winslett, M. Subramaniam, Ying Chen, S. Kuo, K. Seamons","doi":"10.1145/266220.266221","DOIUrl":null,"url":null,"abstract":"A cost-effective way to run a parallel application is to use existing workstations connected by a local area network such as Ethernet or FDDI. In this paper, we present an approach for parallel I/O of multidimensional arrays on small networks of workstations with a shared-media interconnect, using the Panda I/O library. In such an environment, the message passing throughput per node is lower than the throughput obtainable from a fast disk and it is not easy for users to determine the configuration which will yield the best I/O performance. We introduce an I/O strategy that exploits local data to reduce the amount of data that must be shipped across the network, present experimental results, and analyze the results using an analytical performance model and predict the best choice of I/O parameters. Our experiments show that the new strategy results in a factor of 1.2-2.1 speedup in response time compared to the Panda version originally developed for the IBM SP2, depending on the array sizes, distributions and compute and I/O node meshes. Further, the performance model predicts the results within a 13% margin of error.","PeriodicalId":442608,"journal":{"name":"Workshop on I/O in Parallel and Distributed Systems","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on I/O in Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/266220.266221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

A cost-effective way to run a parallel application is to use existing workstations connected by a local area network such as Ethernet or FDDI. In this paper, we present an approach for parallel I/O of multidimensional arrays on small networks of workstations with a shared-media interconnect, using the Panda I/O library. In such an environment, the message passing throughput per node is lower than the throughput obtainable from a fast disk and it is not easy for users to determine the configuration which will yield the best I/O performance. We introduce an I/O strategy that exploits local data to reduce the amount of data that must be shipped across the network, present experimental results, and analyze the results using an analytical performance model and predict the best choice of I/O parameters. Our experiments show that the new strategy results in a factor of 1.2-2.1 speedup in response time compared to the Panda version originally developed for the IBM SP2, depending on the array sizes, distributions and compute and I/O node meshes. Further, the performance model predicts the results within a 13% margin of error.
在实际的工作站网络上利用并行阵列I/O中的本地数据
运行并行应用程序的一种经济有效的方法是使用由局域网(如以太网或FDDI)连接的现有工作站。在本文中,我们提出了一种在具有共享媒体互连的小型工作站网络上使用Panda I/O库实现多维数组并行I/O的方法。在这种环境中,每个节点的消息传递吞吐量低于从快速磁盘获得的吞吐量,并且用户不容易确定将产生最佳I/O性能的配置。我们介绍了一种I/O策略,该策略利用本地数据来减少必须通过网络传输的数据量,给出了实验结果,并使用分析性能模型分析了结果,并预测了I/O参数的最佳选择。我们的实验表明,与最初为IBM SP2开发的Panda版本相比,新策略的响应时间加快了1.2-2.1倍,具体取决于阵列大小、分布以及计算和I/O节点网格。此外,性能模型在13%的误差范围内预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信