Robust D-Stability Analysis of Fractional-Order Controllers

Majid Ghorbani, A. Tepljakov, E. Petlenkov
{"title":"Robust D-Stability Analysis of Fractional-Order Controllers","authors":"Majid Ghorbani, A. Tepljakov, E. Petlenkov","doi":"10.23919/ACC55779.2023.10156257","DOIUrl":null,"url":null,"abstract":"This paper focuses on analyzing the robust $\\mathcal{D}$-stability of fractional-order systems having uncertain coefficients using fractional-order controllers. Robust $\\mathcal{D}$-stability means that each polynomial in a family of an uncertain fractional-order system has all its roots in a prescribed region of the complex plane. By employing the concept of the value set, two distinct methodologies are introduced for scrutinizing the robust $\\mathcal{D}$-stability of the system. Although the outcomes of both approaches are equivalent, their computational appeal may differ. The first approach entails a graphical technique for the analysis of robust $\\mathcal{D}$-stability, while the second approach furnishes a robust $\\mathcal{D}$-stability testing function based on the shape properties of the value set, thereby establishing necessary and sufficient conditions for verifying the robust $\\mathcal{D}$-stability of fractional-order systems using fractional-order controllers. Finally, a numerical example is provided to validate the results presented in this paper.","PeriodicalId":397401,"journal":{"name":"2023 American Control Conference (ACC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC55779.2023.10156257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on analyzing the robust $\mathcal{D}$-stability of fractional-order systems having uncertain coefficients using fractional-order controllers. Robust $\mathcal{D}$-stability means that each polynomial in a family of an uncertain fractional-order system has all its roots in a prescribed region of the complex plane. By employing the concept of the value set, two distinct methodologies are introduced for scrutinizing the robust $\mathcal{D}$-stability of the system. Although the outcomes of both approaches are equivalent, their computational appeal may differ. The first approach entails a graphical technique for the analysis of robust $\mathcal{D}$-stability, while the second approach furnishes a robust $\mathcal{D}$-stability testing function based on the shape properties of the value set, thereby establishing necessary and sufficient conditions for verifying the robust $\mathcal{D}$-stability of fractional-order systems using fractional-order controllers. Finally, a numerical example is provided to validate the results presented in this paper.
分数阶控制器的鲁棒d稳定性分析
本文主要研究了用分数阶控制器分析具有不确定系数的分数阶系统的鲁棒稳定性。鲁棒稳定性是指不确定分数阶系统族中的每个多项式的所有根都在复平面的规定区域内。通过使用值集的概念,引入了两种不同的方法来检查系统的鲁棒稳定性。尽管两种方法的结果是相同的,但它们的计算吸引力可能不同。第一种方法采用图形化技术分析$\mathcal{D}$-鲁棒稳定性,第二种方法给出了基于值集形状属性的$\mathcal{D}$-鲁棒稳定性测试函数,从而为使用分数阶控制器验证分数阶系统的$\mathcal{D}$-鲁棒稳定性建立了充分必要条件。最后,通过数值算例验证了本文的研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信