An Algorithm For Spliting Polynomial Systems Based On F4

M. Monagan, Roman Pearce
{"title":"An Algorithm For Spliting Polynomial Systems Based On F4","authors":"M. Monagan, Roman Pearce","doi":"10.1145/3115936.3115948","DOIUrl":null,"url":null,"abstract":"We present algorithms for splitting polynomial systems using Gröbner bases. For zero dimensional systems, we use FGLM to compute univariate polynomials and factor them, placing the ideal into general position if necessary. For positive dimensional systems, we successively eliminate variables using F4 and use the leading co-efficients of the last variable to split the system. We also present a known optimization to reduce the cost of zero-reductions in F4, an improvement for FGLM over the rationals, and an algorithm for quickly detecting redundant ideals in a decomposition.","PeriodicalId":102463,"journal":{"name":"Proceedings of the International Workshop on Parallel Symbolic Computation","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Workshop on Parallel Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3115936.3115948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present algorithms for splitting polynomial systems using Gröbner bases. For zero dimensional systems, we use FGLM to compute univariate polynomials and factor them, placing the ideal into general position if necessary. For positive dimensional systems, we successively eliminate variables using F4 and use the leading co-efficients of the last variable to split the system. We also present a known optimization to reduce the cost of zero-reductions in F4, an improvement for FGLM over the rationals, and an algorithm for quickly detecting redundant ideals in a decomposition.
基于F4的多项式系统分裂算法
我们提出了使用Gröbner基分割多项式系统的算法。对于零维系统,我们使用FGLM计算单变量多项式并对其进行因式分解,必要时将理想状态置于一般位置。对于正维系统,我们依次使用F4消去变量,并使用最后一个变量的前导系数拆分系统。我们还提出了一种已知的优化方法来降低F4的零约简成本,一种改进的FGLM优于有理数,以及一种快速检测分解中冗余理想的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信