A Low-Complexity Nyström-Based Algorithm for Array Subspace Estimation

Cheng Qian, Lei Huang
{"title":"A Low-Complexity Nyström-Based Algorithm for Array Subspace Estimation","authors":"Cheng Qian, Lei Huang","doi":"10.1109/IMCCC.2012.33","DOIUrl":null,"url":null,"abstract":"Conventional subspace estimation methods rely on the eigenvalue decomposition (EVD) of sample covariance matrix (SCM). For a large array, the EVD-based algorithms inevitably lead to heavy computational load due to the calculation of SCM and its EVD. To circumvent this problem, a Nyström-Based algorithm for subspace estimation is proposed in this paper. In particular, we construct a rank-k EVD method to find the signal subspace without the computation of SCM and its EVD, leading to computational simplicity. Statistical analysis and simulation results show that the devised algorithm for signal subspace estimation is computationally simple.","PeriodicalId":394548,"journal":{"name":"2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCCC.2012.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Conventional subspace estimation methods rely on the eigenvalue decomposition (EVD) of sample covariance matrix (SCM). For a large array, the EVD-based algorithms inevitably lead to heavy computational load due to the calculation of SCM and its EVD. To circumvent this problem, a Nyström-Based algorithm for subspace estimation is proposed in this paper. In particular, we construct a rank-k EVD method to find the signal subspace without the computation of SCM and its EVD, leading to computational simplicity. Statistical analysis and simulation results show that the devised algorithm for signal subspace estimation is computationally simple.
一种低复杂度的Nyström-Based阵列子空间估计算法
传统的子空间估计方法依赖于样本协方差矩阵的特征值分解。对于大型阵列,由于单片机及其EVD的计算,基于EVD的算法不可避免地会导致较大的计算负荷。为了解决这个问题,本文提出了一种用于子空间估计的Nyström-Based算法。特别地,我们构造了一种秩-秩EVD方法来寻找信号子空间,而不需要计算SCM及其EVD,从而使计算变得简单。统计分析和仿真结果表明,所设计的信号子空间估计算法计算简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信