{"title":"SIR Beam Selector for Amazon Echo Devices Audio Front-End","authors":"Xianxian Zhang, T. Kristjansson, Philip Hilmes","doi":"10.1109/SiPS47522.2019.9020406","DOIUrl":null,"url":null,"abstract":"The Audio Front-End (AFE) is a key component in mitigating acoustic environmental challenges for far-field automatic speech recognition (ASR) on Amazon Echo family of products. A critical component of the AFE is the Beam Selector, which identifies which beam points to the target user. In this paper, we proposed a new SIR beam selector that utilizes subband-based signal-to-interference ratios to learn the locations of the audio sources and therefore further improve the beam selection accuracy for multi-microphone based AFE system. We analyzed the performance of a Signal to Interference Ratio (SIR) beam selector with a comparison to classic beam selector using the datasets collected under various conditions. This method is evaluated and shown to simultaneously decrease word-error-rate (WER) for speech recognition by up to 46.20% and improve barge-in performance via FRR by up to 39.18%.","PeriodicalId":256971,"journal":{"name":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS47522.2019.9020406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The Audio Front-End (AFE) is a key component in mitigating acoustic environmental challenges for far-field automatic speech recognition (ASR) on Amazon Echo family of products. A critical component of the AFE is the Beam Selector, which identifies which beam points to the target user. In this paper, we proposed a new SIR beam selector that utilizes subband-based signal-to-interference ratios to learn the locations of the audio sources and therefore further improve the beam selection accuracy for multi-microphone based AFE system. We analyzed the performance of a Signal to Interference Ratio (SIR) beam selector with a comparison to classic beam selector using the datasets collected under various conditions. This method is evaluated and shown to simultaneously decrease word-error-rate (WER) for speech recognition by up to 46.20% and improve barge-in performance via FRR by up to 39.18%.