Support vectors based correlation coefficient for gene and sample selection in cancer classification

P. Mundra, Jagath Rajapakse
{"title":"Support vectors based correlation coefficient for gene and sample selection in cancer classification","authors":"P. Mundra, Jagath Rajapakse","doi":"10.1109/CIBCB.2010.5510689","DOIUrl":null,"url":null,"abstract":"Correlation is a very widely used filter criterion for gene selection in cancer classification. However, it uses all the training samples in ranking, which may not be equally important for the classification. Using support vectors, we demonstrate that classical correlation coefficient based gene selection is biased because of the sample points away from classification margin. To remove such bias, we use only the support vectors for computation of correlation coefficient and propose a backward elimination based SVcc-RFE algorithm. The proposed method is tested on several benchmark cancer gene expression datasets and the results show improvement in classification performance compared to other state-of-the-art methods.","PeriodicalId":340637,"journal":{"name":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2010.5510689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Correlation is a very widely used filter criterion for gene selection in cancer classification. However, it uses all the training samples in ranking, which may not be equally important for the classification. Using support vectors, we demonstrate that classical correlation coefficient based gene selection is biased because of the sample points away from classification margin. To remove such bias, we use only the support vectors for computation of correlation coefficient and propose a backward elimination based SVcc-RFE algorithm. The proposed method is tested on several benchmark cancer gene expression datasets and the results show improvement in classification performance compared to other state-of-the-art methods.
基于支持向量的癌症分类中基因和样本选择的相关系数
相关性是癌症分类中广泛使用的基因选择筛选标准。但是,它使用所有的训练样本进行排序,这对于分类来说可能并不同等重要。利用支持向量,我们证明了经典的基于相关系数的基因选择是有偏差的,因为样本点远离分类边际。为了消除这种偏差,我们只使用支持向量来计算相关系数,并提出了一种基于反向消去的SVcc-RFE算法。该方法在多个基准癌症基因表达数据集上进行了测试,结果表明与其他最先进的方法相比,该方法的分类性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信