Receding horizon based greenhouse air temperature control using grey wolf optimization algorithm

R. Singhal, R. Kumar
{"title":"Receding horizon based greenhouse air temperature control using grey wolf optimization algorithm","authors":"R. Singhal, R. Kumar","doi":"10.1109/UPCON.2016.7894620","DOIUrl":null,"url":null,"abstract":"This work describes the receding horizon control of an inside air temperature of greenhouse using the grey wolf optimization algorithms based on constraints on manipulative variables. Its performance being compared with that of Genetic algorithm and Particle swarm optimization. Classical control methods are difficult to implement for greenhouse air temperature control problem because of high nonlinear and complex nature of system. Meta-heuristic based algorithms are implemented because of their easy to understand, appropriate for different types of problems, stochastic nature helps in evading local extrema and derivative dependency. The results of GWO clearly shown better power saving & smoother control when compared with already implemented GA & PSO meta-heuristic algorithms for greenhouse air temperature control.","PeriodicalId":151809,"journal":{"name":"2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering (UPCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPCON.2016.7894620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This work describes the receding horizon control of an inside air temperature of greenhouse using the grey wolf optimization algorithms based on constraints on manipulative variables. Its performance being compared with that of Genetic algorithm and Particle swarm optimization. Classical control methods are difficult to implement for greenhouse air temperature control problem because of high nonlinear and complex nature of system. Meta-heuristic based algorithms are implemented because of their easy to understand, appropriate for different types of problems, stochastic nature helps in evading local extrema and derivative dependency. The results of GWO clearly shown better power saving & smoother control when compared with already implemented GA & PSO meta-heuristic algorithms for greenhouse air temperature control.
基于灰狼优化算法的后退地平线温室空气温度控制
本文描述了基于控制变量约束的灰狼优化算法对温室室内温度的退层控制。并将其性能与遗传算法和粒子群算法进行了比较。由于温室空气温度控制系统的高度非线性和复杂性,传统的控制方法难以实现。基于元启发式的算法易于理解,适用于不同类型的问题,其随机性有助于避免局部极值和导数依赖。结果表明,与已有的遗传算法和粒子群算法相比,GWO算法具有更好的节能效果和更平滑的控制效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信