{"title":"A Cloud Based Big Data Health-Analytics-as-a-Service Framework to Support Low Resource Setting Neonatal Intensive Care Unit","authors":"Meghana Bastwadkar, C. McGregor, S. Balaji","doi":"10.1145/3418094.3418130","DOIUrl":null,"url":null,"abstract":"Critical care patients are monitored by a range of medical devices collecting high frequency data. New computing frameworks and platforms are being proposed to review and analyze the data in detail. The application of these approaches in a low resource setting is challenged by the approaches used for data acquisition. Software as a Service (SaaS) is a form of cloud computing where a cloud-based software application enables the storage, analysis and visualization of data within the cloud. A subset of SaaS is Health Analytics as a Service (HAaaS), which provides software to support health analytics in the cloud. The objective of this study is to design, implement, and demonstrate an extendable big-data compatible HAaaS framework that offers both real-time and retrospective analysis where data acquisition is not tightly coupled. A data warehousing framework is presented to facilitate analysis within a low resource setting. The framework has been instantiated in the Artemis platform within the context of the Belgaum Children Hospital (BCH) case study. Initial end-to-end testing with the Nellcor monitor (bedside monitor at BCH), which was not connected to any human, was completed. This testing confirms the functionality of the new Artemis cloud instance to receive data from test device using an alternate data acquisition approach.","PeriodicalId":192804,"journal":{"name":"Proceedings of the 4th International Conference on Medical and Health Informatics","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Medical and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3418094.3418130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Critical care patients are monitored by a range of medical devices collecting high frequency data. New computing frameworks and platforms are being proposed to review and analyze the data in detail. The application of these approaches in a low resource setting is challenged by the approaches used for data acquisition. Software as a Service (SaaS) is a form of cloud computing where a cloud-based software application enables the storage, analysis and visualization of data within the cloud. A subset of SaaS is Health Analytics as a Service (HAaaS), which provides software to support health analytics in the cloud. The objective of this study is to design, implement, and demonstrate an extendable big-data compatible HAaaS framework that offers both real-time and retrospective analysis where data acquisition is not tightly coupled. A data warehousing framework is presented to facilitate analysis within a low resource setting. The framework has been instantiated in the Artemis platform within the context of the Belgaum Children Hospital (BCH) case study. Initial end-to-end testing with the Nellcor monitor (bedside monitor at BCH), which was not connected to any human, was completed. This testing confirms the functionality of the new Artemis cloud instance to receive data from test device using an alternate data acquisition approach.