Perturbation analysis for palindromic and anti-palindromic nonlinear eigenvalue problems

Sk. Safique Ahmad
{"title":"Perturbation analysis for palindromic and anti-palindromic nonlinear eigenvalue problems","authors":"Sk. Safique Ahmad","doi":"10.1553/ETNA_VOL51S151","DOIUrl":null,"url":null,"abstract":"A structured backward error analysis for an approximate eigenpair of structured nonlinear matrix equations with T -palindromic, H-palindromic, T -anti-palindromic, and H-anti-palindromic structures is conducted. We construct a minimal structured perturbation in the Frobenius norm such that an approximate eigenpair becomes an exact eigenpair of an appropriately perturbed nonlinear matrix equation. The present work shows that our general framework extends existing results in the literature on the perturbation theory of matrix polynomials.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/ETNA_VOL51S151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A structured backward error analysis for an approximate eigenpair of structured nonlinear matrix equations with T -palindromic, H-palindromic, T -anti-palindromic, and H-anti-palindromic structures is conducted. We construct a minimal structured perturbation in the Frobenius norm such that an approximate eigenpair becomes an exact eigenpair of an appropriately perturbed nonlinear matrix equation. The present work shows that our general framework extends existing results in the literature on the perturbation theory of matrix polynomials.
回文和反回文非线性特征值问题的摄动分析
对具有T -回文、h -回文、T -反回文和h -反回文结构的非线性矩阵方程近似特征对进行了结构化后向误差分析。我们在Frobenius范数中构造了一个最小结构摄动,使得近似特征对成为适当摄动的非线性矩阵方程的精确特征对。本文的工作表明,我们的一般框架扩展了已有文献中关于矩阵多项式摄动理论的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信