D. S. Rawal, Sunil Sharma, S. Mahajan, M. Mishra, R. Khatri, A. Naik, B. K. Sehgal
{"title":"Scaling of current collapse in GaN/AlGaN HEMT for microwave power applications","authors":"D. S. Rawal, Sunil Sharma, S. Mahajan, M. Mishra, R. Khatri, A. Naik, B. K. Sehgal","doi":"10.1109/IMARC.2015.7411434","DOIUrl":null,"url":null,"abstract":"This study reports the scaling of current collapse in GaN/AlGaN HEMTs with respect to the un-passivated gate drain distance on the gate edge. The source drain current reduction increased from 4mA to 28mA, when un-passivated gap increased from 200nm to 600nm respectively. This reduction in current is mainly due to virtual gate formation at gate edge as a result of applied large reverse bias between the gate and drain electrodes. The length of virtual gate is a function of un-passivated gap and results in variable current reduction due to variation in available traps with gap. Similarly knee voltage shifted from 0.5 V to 1.2 V when gap is increased from 200nm to 600nm respectively. This is due to increase in device on resistance (Ron) due to electron trapping in the un-passivated gap. This current collapse resulted in reduction of device saturated RF power to 1.2W/mm at 2.2GHz for HEMT with an un-passivated gap of 600nm.","PeriodicalId":307742,"journal":{"name":"2015 IEEE MTT-S International Microwave and RF Conference (IMaRC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE MTT-S International Microwave and RF Conference (IMaRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMARC.2015.7411434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This study reports the scaling of current collapse in GaN/AlGaN HEMTs with respect to the un-passivated gate drain distance on the gate edge. The source drain current reduction increased from 4mA to 28mA, when un-passivated gap increased from 200nm to 600nm respectively. This reduction in current is mainly due to virtual gate formation at gate edge as a result of applied large reverse bias between the gate and drain electrodes. The length of virtual gate is a function of un-passivated gap and results in variable current reduction due to variation in available traps with gap. Similarly knee voltage shifted from 0.5 V to 1.2 V when gap is increased from 200nm to 600nm respectively. This is due to increase in device on resistance (Ron) due to electron trapping in the un-passivated gap. This current collapse resulted in reduction of device saturated RF power to 1.2W/mm at 2.2GHz for HEMT with an un-passivated gap of 600nm.