Exploring Memory Hierarchy to Improve Scientific Data Read Performance

Wenzhao Zhang, Houjun Tang, Xiaocheng Zou, Steve Harenberg, Qing Liu, S. Klasky, N. Samatova
{"title":"Exploring Memory Hierarchy to Improve Scientific Data Read Performance","authors":"Wenzhao Zhang, Houjun Tang, Xiaocheng Zou, Steve Harenberg, Qing Liu, S. Klasky, N. Samatova","doi":"10.1109/CLUSTER.2015.18","DOIUrl":null,"url":null,"abstract":"Improving read performance is one of the major challenges with speeding up scientific data analytic applications. Utilizing the memory hierarchy is one major line of researches to address the read performance bottleneck. Related methods usually combine solide-state-drives(SSDs) with dynamic random-access memory(DRAM) and/or parallel file system(PFS) to mitigate the speed and space gap between DRAM and PFS. However, these methods are unable to handle key performance issues plaguing SSDs, namely read contention that may cause up to 50% performance reduction. In this paper, we propose a framework that exploits the memory hierarchy resource to address the read contention issues involved with SSDs. The framework employs a general purpose online read algorithm that able to detect and utilize memory hierarchy resource to relieve the problem. To maintain a near optimal operating environment for SSDs, the framework is able to orchastrate data chunks across different memory layers to facilitate the read algorithm. Compared to existing tools, our framework achieves up to 50% read performance improvement when tested on datasets from real-world scientific simulations.","PeriodicalId":187042,"journal":{"name":"2015 IEEE International Conference on Cluster Computing","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTER.2015.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Improving read performance is one of the major challenges with speeding up scientific data analytic applications. Utilizing the memory hierarchy is one major line of researches to address the read performance bottleneck. Related methods usually combine solide-state-drives(SSDs) with dynamic random-access memory(DRAM) and/or parallel file system(PFS) to mitigate the speed and space gap between DRAM and PFS. However, these methods are unable to handle key performance issues plaguing SSDs, namely read contention that may cause up to 50% performance reduction. In this paper, we propose a framework that exploits the memory hierarchy resource to address the read contention issues involved with SSDs. The framework employs a general purpose online read algorithm that able to detect and utilize memory hierarchy resource to relieve the problem. To maintain a near optimal operating environment for SSDs, the framework is able to orchastrate data chunks across different memory layers to facilitate the read algorithm. Compared to existing tools, our framework achieves up to 50% read performance improvement when tested on datasets from real-world scientific simulations.
探索内存层次结构以提高科学数据读取性能
提高读取性能是加快科学数据分析应用程序的主要挑战之一。利用内存层次结构是解决读性能瓶颈的主要研究方向之一。相关的方法通常是将固态硬盘(ssd)与动态随机存取存储器(DRAM)和/或并行文件系统(PFS)结合起来,以减轻DRAM和PFS之间的速度和空间差距。然而,这些方法无法处理困扰ssd的关键性能问题,即可能导致高达50%性能下降的读争用。在本文中,我们提出了一个框架,利用内存层次资源来解决与ssd有关的读争用问题。该框架采用了一种通用的在线读取算法,能够检测和利用内存层次资源来解决这个问题。为了维护ssd近乎最佳的操作环境,该框架能够跨不同内存层编排数据块,以促进读取算法。与现有工具相比,我们的框架在真实世界科学模拟的数据集上测试时,读取性能提高了50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信