Global Optimisation with Constructive Reals

D. Ghica, Todd Waugh Ambridge
{"title":"Global Optimisation with Constructive Reals","authors":"D. Ghica, Todd Waugh Ambridge","doi":"10.1109/LICS52264.2021.9470549","DOIUrl":null,"url":null,"abstract":"We draw new connections between deterministic, complete, and general global optimisation of continuous functions and a generalised notion of regression, using constructive type theory and computable real numbers. Using this foundation we formulate novel convergence criteria for regression, derived from the convergence properties of global optimisations. We see this as possibly having an impact on optimisation-based computational sciences, which include much of machine learning. Using computable reals, as opposed to floating-point representations, we can give strong theoretical guarantees in terms of both precision and termination. The theory is fully formalised using the safe mode of the proof assistant AGDA. Some examples implemented using an off-the-shelf constructive reals library in JAVA indicate that the approach is algorithmically promising.","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We draw new connections between deterministic, complete, and general global optimisation of continuous functions and a generalised notion of regression, using constructive type theory and computable real numbers. Using this foundation we formulate novel convergence criteria for regression, derived from the convergence properties of global optimisations. We see this as possibly having an impact on optimisation-based computational sciences, which include much of machine learning. Using computable reals, as opposed to floating-point representations, we can give strong theoretical guarantees in terms of both precision and termination. The theory is fully formalised using the safe mode of the proof assistant AGDA. Some examples implemented using an off-the-shelf constructive reals library in JAVA indicate that the approach is algorithmically promising.
具有建设性现实的全局优化
我们利用构造型理论和可计算实数,在连续函数的确定性、完全和一般全局优化与回归的广义概念之间建立了新的联系。利用这个基础,我们制定了新的收敛准则的回归,从收敛性质的全局优化。我们认为这可能会对基于优化的计算科学产生影响,其中包括许多机器学习。使用可计算实数,而不是浮点表示,我们可以在精度和终止方面提供强有力的理论保证。该理论是完全形式化使用安全模式的证明助理AGDA。使用JAVA中现成的建设性real库实现的一些示例表明,该方法在算法上是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信