Inverse diffraction grating problems as optimization tasks: from naïve to Bayes approach

L. Goray, A. Dashkov, N. A. Kostromin
{"title":"Inverse diffraction grating problems as optimization tasks: from naïve to Bayes approach","authors":"L. Goray, A. Dashkov, N. A. Kostromin","doi":"10.1109/DD55230.2022.9961015","DOIUrl":null,"url":null,"abstract":"The authors consider the inverse conical diffraction problem as an optimization problem. We apply several techniques: the genetic algorithm, the stochastic gradient descent method, the Bayesian approach, and the neural network approach. The boundary integral equation method is utilized to solve the direct problem. Using a range of numerical experiments, we demonstrate that the mixed Bayesian with stochastic gradient descent optimization technique allows one to obtain the solution to the inverse diffraction grating problem in the most convenient and fast way possible. The authors provide a detailed configuration description necessary for a successful optimization process.","PeriodicalId":125852,"journal":{"name":"2022 Days on Diffraction (DD)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Days on Diffraction (DD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD55230.2022.9961015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The authors consider the inverse conical diffraction problem as an optimization problem. We apply several techniques: the genetic algorithm, the stochastic gradient descent method, the Bayesian approach, and the neural network approach. The boundary integral equation method is utilized to solve the direct problem. Using a range of numerical experiments, we demonstrate that the mixed Bayesian with stochastic gradient descent optimization technique allows one to obtain the solution to the inverse diffraction grating problem in the most convenient and fast way possible. The authors provide a detailed configuration description necessary for a successful optimization process.
作为优化任务的逆衍射光栅问题:从naïve到贝叶斯方法
作者把反圆锥衍射问题看作一个优化问题。我们应用了几种技术:遗传算法、随机梯度下降法、贝叶斯方法和神经网络方法。采用边界积分方程法求解直接问题。通过一系列的数值实验,我们证明了混合贝叶斯与随机梯度下降优化技术可以以最方便、最快速的方式得到反衍射光栅问题的解。作者提供了一个成功的优化过程所必需的详细配置描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信