Dataset Distillation for Core Training Set Construction

Yuna Jeong, Myunggwon Hwang, Won-Kyoung Sung
{"title":"Dataset Distillation for Core Training Set Construction","authors":"Yuna Jeong, Myunggwon Hwang, Won-Kyoung Sung","doi":"10.1145/3426020.3426051","DOIUrl":null,"url":null,"abstract":"Machine learning is a widely adopted solution to complex and non-linear problems, but it takes considerable labor and time to develop an optimal model with high reliability. The costs increase even more as the model deepens and training data grows. This paper presents a method in which, a technique known as dataset distillation, can be implemented in data selection to reduce the training time. We first train the model with distilled images, and then, predict original train data to measure training contribution as sampling weight of selection. Our method enables the fast and easy calculation of weights even in the case of redesigning a network.","PeriodicalId":305132,"journal":{"name":"The 9th International Conference on Smart Media and Applications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 9th International Conference on Smart Media and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3426020.3426051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Machine learning is a widely adopted solution to complex and non-linear problems, but it takes considerable labor and time to develop an optimal model with high reliability. The costs increase even more as the model deepens and training data grows. This paper presents a method in which, a technique known as dataset distillation, can be implemented in data selection to reduce the training time. We first train the model with distilled images, and then, predict original train data to measure training contribution as sampling weight of selection. Our method enables the fast and easy calculation of weights even in the case of redesigning a network.
用于核心训练集构建的数据集蒸馏
机器学习是一种被广泛采用的解决复杂和非线性问题的方法,但要建立一个高可靠性的最优模型需要大量的劳动和时间。随着模型的深化和训练数据的增长,成本甚至会增加。本文提出了一种将数据集蒸馏技术用于数据选择的方法,以减少训练时间。我们首先用提取的图像对模型进行训练,然后预测原始训练数据作为选择的采样权来衡量训练贡献。我们的方法即使在重新设计网络的情况下也能快速简便地计算出权重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信