Probability-based Approach for Predicting E-commerce Consumer Behaviour Using Sparse Session Data

Øyvind H. Myklatun, Thorstein K. Thorrud, H. Nguyen, H. Langseth, Anders Kofod-Petersen
{"title":"Probability-based Approach for Predicting E-commerce Consumer Behaviour Using Sparse Session Data","authors":"Øyvind H. Myklatun, Thorstein K. Thorrud, H. Nguyen, H. Langseth, Anders Kofod-Petersen","doi":"10.1145/2813448.2813514","DOIUrl":null,"url":null,"abstract":"This paper describes some of the key properties of the proposed solution for the RecSys 2015 Challenge from the team Tøyvind thørrud. Three contributions will be highlighted: i) Feature extraction, ii) Classifier design, and iii) Decision rules to optimize the prediction results towards the RecSys Challenge's score. We finished sixth out of more than 250 active teams in the competition.","PeriodicalId":324873,"journal":{"name":"Proceedings of the 2015 International ACM Recommender Systems Challenge","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International ACM Recommender Systems Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2813448.2813514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes some of the key properties of the proposed solution for the RecSys 2015 Challenge from the team Tøyvind thørrud. Three contributions will be highlighted: i) Feature extraction, ii) Classifier design, and iii) Decision rules to optimize the prediction results towards the RecSys Challenge's score. We finished sixth out of more than 250 active teams in the competition.
基于概率的稀疏会话数据预测电子商务消费者行为方法
本文介绍了Tøyvind ørrud团队为RecSys 2015挑战赛提出的解决方案的一些关键特性。将突出三个贡献:i)特征提取,ii)分类器设计,以及iii)决策规则,以优化对RecSys挑战分数的预测结果。在250多支参赛队伍中,我们获得了第六名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信