Additive Schwarz preconditioners for a localized orthogonal decomposition method

S. C. Brenner, J. C. Garay, L. Sung
{"title":"Additive Schwarz preconditioners for a localized orthogonal decomposition method","authors":"S. C. Brenner, J. C. Garay, L. Sung","doi":"10.1553/ETNA_VOL54S234","DOIUrl":null,"url":null,"abstract":"We investigate a variant of the localized orthogonal decomposition method (Henning and Peterseim, [Multiscale Model. Simul., 11 (2013), pp. 1149–1175] and Målqvist and Peterseim, [Math. Comp., 83 (2014), pp. 2583–2603]) for elliptic problems with rough coefficients. The construction of the basis of the multiscale finite element space is based on domain decomposition techniques, which is motivated by the recent work of Kornhuber, Peterseim, and Yserentant [Math. Comp., 87 (2018), pp. 2765–2774]. We also design and analyze additive Schwarz domain decomposition preconditioners for the resulting discrete problems.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/ETNA_VOL54S234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We investigate a variant of the localized orthogonal decomposition method (Henning and Peterseim, [Multiscale Model. Simul., 11 (2013), pp. 1149–1175] and Målqvist and Peterseim, [Math. Comp., 83 (2014), pp. 2583–2603]) for elliptic problems with rough coefficients. The construction of the basis of the multiscale finite element space is based on domain decomposition techniques, which is motivated by the recent work of Kornhuber, Peterseim, and Yserentant [Math. Comp., 87 (2018), pp. 2765–2774]. We also design and analyze additive Schwarz domain decomposition preconditioners for the resulting discrete problems.
加性Schwarz预调节器的局部正交分解方法
我们研究了局部正交分解方法的一种变体(Henning和Peterseim,[多尺度模型])。同时。[数学],11 (2013),pp. 1149-1175]和ma lqvist和Peterseim,[数学]。Comp., 83 (2014), pp. 2583-2603])的粗糙系数椭圆问题。多尺度有限元空间基础的构建是基于域分解技术的,这是受到Kornhuber, Peterseim和Yserentant [Math]最近工作的启发。比较,87 (2018),pp. 2765-2774]。我们还设计和分析了所得到的离散问题的加性Schwarz域分解预处理条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信