Cryptocurrency Day Trading and Framing Prediction in Microblog Discourse

Anna Paula Pawlicka Maule, Kristen Marie Johnson
{"title":"Cryptocurrency Day Trading and Framing Prediction in Microblog Discourse","authors":"Anna Paula Pawlicka Maule, Kristen Marie Johnson","doi":"10.18653/v1/2021.econlp-1.11","DOIUrl":null,"url":null,"abstract":"With 56 million people actively trading and investing in cryptocurrency online and globally in 2020, there is an increasing need for automatic social media analysis tools to help understand trading discourse and behavior. In this work, we present a dual natural language modeling pipeline which leverages language and social network behaviors for the prediction of cryptocurrency day trading actions and their associated framing patterns. This pipeline first predicts if tweets can be used to guide day trading behavior, specifically if a cryptocurrency investor should buy, sell, or hold their cryptocurrencies in order to make a profit. Next, tweets are input to an unsupervised deep clustering approach to automatically detect trading framing patterns. Our contributions include the modeling pipeline for this novel task, a new Cryptocurrency Tweets Dataset compiled from influential accounts, and a Historical Price Dataset. Our experiments show that our approach achieves an 88.78% accuracy for day trading behavior prediction and reveals framing fluctuations prior to and during the COVID-19 pandemic that could be used to guide investment actions.","PeriodicalId":166554,"journal":{"name":"Proceedings of the Third Workshop on Economics and Natural Language Processing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third Workshop on Economics and Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.econlp-1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With 56 million people actively trading and investing in cryptocurrency online and globally in 2020, there is an increasing need for automatic social media analysis tools to help understand trading discourse and behavior. In this work, we present a dual natural language modeling pipeline which leverages language and social network behaviors for the prediction of cryptocurrency day trading actions and their associated framing patterns. This pipeline first predicts if tweets can be used to guide day trading behavior, specifically if a cryptocurrency investor should buy, sell, or hold their cryptocurrencies in order to make a profit. Next, tweets are input to an unsupervised deep clustering approach to automatically detect trading framing patterns. Our contributions include the modeling pipeline for this novel task, a new Cryptocurrency Tweets Dataset compiled from influential accounts, and a Historical Price Dataset. Our experiments show that our approach achieves an 88.78% accuracy for day trading behavior prediction and reveals framing fluctuations prior to and during the COVID-19 pandemic that could be used to guide investment actions.
微博话语中的加密货币日内交易与框架预测
到2020年,全球有5600万人在网上和全球范围内积极交易和投资加密货币,因此越来越需要自动社交媒体分析工具来帮助理解交易话语和行为。在这项工作中,我们提出了一种双重自然语言建模管道,它利用语言和社交网络行为来预测加密货币当日交易行为及其相关的框架模式。这条管道首先预测推文是否可以用来指导日内交易行为,特别是加密货币投资者是否应该买入、卖出或持有加密货币以获利。接下来,将推文输入到无监督深度聚类方法中,以自动检测交易框架模式。我们的贡献包括这个新任务的建模管道,一个由有影响力的账户编译的新的加密货币推文数据集,以及一个历史价格数据集。我们的实验表明,我们的方法在日内交易行为预测方面达到了88.78%的准确率,并揭示了COVID-19大流行之前和期间的框架波动,可用于指导投资行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信