Jiho Park, Virinchi Roy Surabhi, P. Krishnamurthy, S. Garg, R. Karri, F. Khorrami
{"title":"Anomaly Detection in Embedded Systems Using Power and Memory Side Channels","authors":"Jiho Park, Virinchi Roy Surabhi, P. Krishnamurthy, S. Garg, R. Karri, F. Khorrami","doi":"10.1109/ETS48528.2020.9131596","DOIUrl":null,"url":null,"abstract":"We propose multi-modal anomaly detection in embedded systems using time-correlated measurements of power consumption and memory accesses. Time series of power consumption of the processor and memory accesses between L2 cache and memory bus under known-good conditions are used to train one-class support vector machine (SVM) and isolation forest classifiers. These side channels have complementary anomaly detection capabilities. Experiments on a high-fidelity processor emulator show that the method accurately detects anomalies.","PeriodicalId":267309,"journal":{"name":"2020 IEEE European Test Symposium (ETS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS48528.2020.9131596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We propose multi-modal anomaly detection in embedded systems using time-correlated measurements of power consumption and memory accesses. Time series of power consumption of the processor and memory accesses between L2 cache and memory bus under known-good conditions are used to train one-class support vector machine (SVM) and isolation forest classifiers. These side channels have complementary anomaly detection capabilities. Experiments on a high-fidelity processor emulator show that the method accurately detects anomalies.