Pose-Invariant 3D Object Recognition Using Linear Combination of 2D Views and Evolutionary Optimisation

V. Zografos, B. Buxton
{"title":"Pose-Invariant 3D Object Recognition Using Linear Combination of 2D Views and Evolutionary Optimisation","authors":"V. Zografos, B. Buxton","doi":"10.1109/ICCTA.2007.105","DOIUrl":null,"url":null,"abstract":"In this work, we present a method for model-based recognition of 3d objects from a small number of 2d intensity images taken from nearby, but otherwise arbitrary viewpoints. Our method works by linearly combining images from two (or more) viewpoints of a 3d object to synthesise novel views of the object. The object is recognised in a target image by matching to such a synthesised, novel view. All that is required is the recovery of the linear combination parameters, and since we are working directly with pixel intensities, we suggest searching the parameter space using an evolutionary optimisation algorithm in order to efficiently recover the optimal parameters and thus recognise the object in the scene","PeriodicalId":308247,"journal":{"name":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA.2007.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this work, we present a method for model-based recognition of 3d objects from a small number of 2d intensity images taken from nearby, but otherwise arbitrary viewpoints. Our method works by linearly combining images from two (or more) viewpoints of a 3d object to synthesise novel views of the object. The object is recognised in a target image by matching to such a synthesised, novel view. All that is required is the recovery of the linear combination parameters, and since we are working directly with pixel intensities, we suggest searching the parameter space using an evolutionary optimisation algorithm in order to efficiently recover the optimal parameters and thus recognise the object in the scene
基于二维视图线性组合和进化优化的姿态不变三维目标识别
在这项工作中,我们提出了一种基于模型的方法,从附近的少量2d强度图像中识别3d物体,但其他任意视点。我们的方法通过线性组合一个3d物体的两个(或多个)视点的图像来合成该物体的新视图。通过匹配这样一个合成的、新颖的视图,在目标图像中识别物体。所有需要的是线性组合参数的恢复,并且由于我们直接使用像素强度,我们建议使用进化优化算法搜索参数空间,以便有效地恢复最佳参数,从而识别场景中的对象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信