A new class of binary sequences with low correlation and large linear complexity from function fields

Honggang Hu, L. Hu, D. Feng
{"title":"A new class of binary sequences with low correlation and large linear complexity from function fields","authors":"Honggang Hu, L. Hu, D. Feng","doi":"10.1109/ISIT.2005.1523695","DOIUrl":null,"url":null,"abstract":"Recently Xing et al constructed some families of binary sequences with low correlation and large linear complexity by making use of the theory of Artin-Schreier extensions of function fields. In this paper, we present a new construction by using the theory of Kummer extensions of function fields. The analysis shows than they have large periods, large linear complexities, and low correlations. In some cases, our method is better than that of Xing et al","PeriodicalId":166130,"journal":{"name":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Information Theory, 2005. ISIT 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2005.1523695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently Xing et al constructed some families of binary sequences with low correlation and large linear complexity by making use of the theory of Artin-Schreier extensions of function fields. In this paper, we present a new construction by using the theory of Kummer extensions of function fields. The analysis shows than they have large periods, large linear complexities, and low correlations. In some cases, our method is better than that of Xing et al
从函数场中得到了一类新的低相关性和大线性复杂度的二值序列
最近,Xing等人利用函数域的Artin-Schreier扩展理论构造了一些低相关性和大线性复杂度的二值序列族。本文利用函数域的Kummer扩展理论提出了一种新的构造方法。分析表明,它们具有大周期、大线性复杂性和低相关性。在某些情况下,我们的方法优于Xing等人的方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信