Design of adaptive moving-target tracking control for vision-based mobile robot

You-Wei Lin, R. Wai
{"title":"Design of adaptive moving-target tracking control for vision-based mobile robot","authors":"You-Wei Lin, R. Wai","doi":"10.1109/CICA.2013.6611684","DOIUrl":null,"url":null,"abstract":"This study constructs an adaptive moving-target tracking control (AMTC) scheme via a dynamic Petri recurrent-fuzzy-neural-network (DPRFNN) for a vision-based mobile robot with a tilt camera. First, a continuously adaptive mean shift (CAMS) algorithm is adopted for the moving-object detection, and a model-based conventional sliding-mode control (CSMC) strategy is introduced. Moreover, it further designs a model-free AMTC scheme with a DPRFNN for imitating the CSMC strategy for relaxing the control design dependent on detailed system information and alleviating chattering phenomena caused by the inappropriate selection of uncertainty bounds. In addition, a switching path-planning scheme plus the AMTC is designed without detailed environmental information, large memory size and heavy computation burden for the obstacle avoidance of a mobile robot. Furthermore, numerical simulations are given to verify the effectiveness of the proposed AMTC scheme under different target tracking, and its superiority is indiented in comparison with the CSMC System","PeriodicalId":424622,"journal":{"name":"2013 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2013.6611684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This study constructs an adaptive moving-target tracking control (AMTC) scheme via a dynamic Petri recurrent-fuzzy-neural-network (DPRFNN) for a vision-based mobile robot with a tilt camera. First, a continuously adaptive mean shift (CAMS) algorithm is adopted for the moving-object detection, and a model-based conventional sliding-mode control (CSMC) strategy is introduced. Moreover, it further designs a model-free AMTC scheme with a DPRFNN for imitating the CSMC strategy for relaxing the control design dependent on detailed system information and alleviating chattering phenomena caused by the inappropriate selection of uncertainty bounds. In addition, a switching path-planning scheme plus the AMTC is designed without detailed environmental information, large memory size and heavy computation burden for the obstacle avoidance of a mobile robot. Furthermore, numerical simulations are given to verify the effectiveness of the proposed AMTC scheme under different target tracking, and its superiority is indiented in comparison with the CSMC System
基于视觉的移动机器人自适应运动目标跟踪控制设计
针对带倾斜摄像头的视觉移动机器人,采用动态Petri递归模糊神经网络(DPRFNN)构建了一种自适应运动目标跟踪控制方案。首先,采用连续自适应平均位移(CAMS)算法进行运动目标检测,并引入基于模型的常规滑模控制(CSMC)策略。在此基础上,进一步设计了一种无模型的AMTC方案,利用DPRFNN模仿CSMC策略,减轻了控制设计对系统详细信息的依赖,减轻了不确定性界选择不当引起的抖振现象。此外,针对移动机器人避障问题,设计了一种不需要详细环境信息、内存容量大、计算量大的切换路径规划方案。通过数值仿真验证了所提出的AMTC方案在不同目标跟踪情况下的有效性,并与CSMC系统进行了比较,得出了其优越性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信