Multi-modal Stress Recognition Using Temporal Convolution and Recurrent Network with Positional Embedding

Anh-Quang Duong, Ngoc-Huynh Ho, Hyung-Jeong Yang, Gueesang Lee, Soohyung Kim
{"title":"Multi-modal Stress Recognition Using Temporal Convolution and Recurrent Network with Positional Embedding","authors":"Anh-Quang Duong, Ngoc-Huynh Ho, Hyung-Jeong Yang, Gueesang Lee, Soohyung Kim","doi":"10.1145/3475957.3484453","DOIUrl":null,"url":null,"abstract":"Chronic stress causes cancer, cardiovascular disease, depression, and diabetes, therefore, it is profoundly harmful to physiologic and psychological health. Various works have examined ways to identify, prevent, and manage people's stress conditions by using deep learning techniques. The 2nd Multimodal Sentiment Analysis Challenge (MuSe 2021) provides a testing bed for recognizing human emotion in stressed dispositions. In this study, we present our proposal to the Muse-Stress sub-challenge of MuSe 2021. There are several modalities including frontal frame sequence, audio signals, and transcripts. Our model uses temporal convolution and recurrent network with positional embedding. As result, our model achieved a concordance correlation coefficient of 0.5095, which is the average of valence and arousal. Moreover, we ranked 3rd in this competition under the team name CNU_SCLab.","PeriodicalId":313996,"journal":{"name":"Proceedings of the 2nd on Multimodal Sentiment Analysis Challenge","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd on Multimodal Sentiment Analysis Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3475957.3484453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Chronic stress causes cancer, cardiovascular disease, depression, and diabetes, therefore, it is profoundly harmful to physiologic and psychological health. Various works have examined ways to identify, prevent, and manage people's stress conditions by using deep learning techniques. The 2nd Multimodal Sentiment Analysis Challenge (MuSe 2021) provides a testing bed for recognizing human emotion in stressed dispositions. In this study, we present our proposal to the Muse-Stress sub-challenge of MuSe 2021. There are several modalities including frontal frame sequence, audio signals, and transcripts. Our model uses temporal convolution and recurrent network with positional embedding. As result, our model achieved a concordance correlation coefficient of 0.5095, which is the average of valence and arousal. Moreover, we ranked 3rd in this competition under the team name CNU_SCLab.
基于时间卷积和位置嵌入递归网络的多模态应力识别
慢性压力会导致癌症、心血管疾病、抑郁症和糖尿病,因此,它对生理和心理健康都有深远的危害。各种各样的工作已经研究了通过使用深度学习技术来识别、预防和管理人们的压力状况的方法。第二届多模态情感分析挑战赛(MuSe 2021)为识别压力倾向下的人类情感提供了一个测试平台。在本研究中,我们对MuSe 2021的MuSe - stress子挑战提出了我们的建议。有几种模式,包括前帧序列、音频信号和转录本。我们的模型使用时间卷积和循环网络与位置嵌入。结果表明,该模型的一致性相关系数为0.5095,即效价和唤醒的平均值。此外,我们在本次比赛中以CNU_SCLab的队名获得了第三名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信